Deformations of acid-mediated invasive tumors in a model with Allee effect

Paul Carter, Arjen Doelman, Peter van Heijster, Daniel Levy, Philip Maini, Erin Okey, Paige Yeung
{"title":"Deformations of acid-mediated invasive tumors in a model with Allee effect","authors":"Paul Carter, Arjen Doelman, Peter van Heijster, Daniel Levy, Philip Maini, Erin Okey, Paige Yeung","doi":"arxiv-2408.16172","DOIUrl":null,"url":null,"abstract":"We consider a Gatenby--Gawlinski-type model of invasive tumors in the\npresence of an Allee effect. We describe the construction of bistable\none-dimensional traveling fronts using singular perturbation techniques in\ndifferent parameter regimes corresponding to tumor interfaces with, or without,\nacellular gap. By extending the front as a planar interface, we perform a\nstability analysis to long wavelength perturbations transverse to the direction\nof front propagation and derive a simple stability criterion for the front in\ntwo spatial dimensions. In particular we find that in general the presence of\nthe acellular gap indicates transversal instability of the associated planar\nfront, which can lead to complex interfacial dynamics such as the development\nof finger-like protrusions and/or different invasion speeds.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"188 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a Gatenby--Gawlinski-type model of invasive tumors in the presence of an Allee effect. We describe the construction of bistable one-dimensional traveling fronts using singular perturbation techniques in different parameter regimes corresponding to tumor interfaces with, or without, acellular gap. By extending the front as a planar interface, we perform a stability analysis to long wavelength perturbations transverse to the direction of front propagation and derive a simple stability criterion for the front in two spatial dimensions. In particular we find that in general the presence of the acellular gap indicates transversal instability of the associated planar front, which can lead to complex interfacial dynamics such as the development of finger-like protrusions and/or different invasion speeds.
阿利效应模型中酸介导的侵袭性肿瘤的变形
我们考虑了一个存在阿利效应的侵袭性肿瘤的加滕比-高林斯基型模型。我们描述了利用奇异扰动技术构建双稳态一维行进前沿的方法,该方法与有或无细胞间隙的肿瘤界面对应的参数无关。通过将前沿扩展为平面界面,我们对横向于前沿传播方向的长波长扰动进行了稳定性分析,并得出了前沿在两个空间维度上的简单稳定性准则。我们特别发现,一般来说,细胞间隙的存在表明相关平面前沿的横向不稳定性,这可能导致复杂的界面动力学,如指状突起的发展和/或不同的入侵速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信