Conformal measures of (anti)holomorphic correspondences

Nils Hemmingsson, Xiaoran Li, Zhiqiang Li
{"title":"Conformal measures of (anti)holomorphic correspondences","authors":"Nils Hemmingsson, Xiaoran Li, Zhiqiang Li","doi":"arxiv-2409.01361","DOIUrl":null,"url":null,"abstract":"In this paper, we study the existence and properties of conformal measures on\nlimit sets of (anti)holomorphic correspondences. We show that if the critical\nexponent satisfies $1\\leq \\delta_{\\operatorname{crit}}(x) <+\\infty,$ the\ncorrespondence $F$ is (relatively) hyperbolic on the limit set $\\Lambda_+(x)$,\nand $\\Lambda_+(x)$ is minimal, then $\\Lambda_+(x)$ admits a non-atomic\nconformal measure for $F$ and the Hausdorff dimension of $\\Lambda_+(x)$ is\nstrictly less than 2. As a special case, this shows that for a parameter $a$ in\nthe interior of a hyperbolic component of the modular Mandelbrot set, the limit\nset of the Bullett--Penrose correspondence $F_a$ has a non-atomic conformal\nmeasure and its Hausdorff dimension is strictly less than 2. The same results\nhold for the LLMM correspondences, under some extra assumptions on its defining\nfunction $f$.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the existence and properties of conformal measures on limit sets of (anti)holomorphic correspondences. We show that if the critical exponent satisfies $1\leq \delta_{\operatorname{crit}}(x) <+\infty,$ the correspondence $F$ is (relatively) hyperbolic on the limit set $\Lambda_+(x)$, and $\Lambda_+(x)$ is minimal, then $\Lambda_+(x)$ admits a non-atomic conformal measure for $F$ and the Hausdorff dimension of $\Lambda_+(x)$ is strictly less than 2. As a special case, this shows that for a parameter $a$ in the interior of a hyperbolic component of the modular Mandelbrot set, the limit set of the Bullett--Penrose correspondence $F_a$ has a non-atomic conformal measure and its Hausdorff dimension is strictly less than 2. The same results hold for the LLMM correspondences, under some extra assumptions on its defining function $f$.
反)全态对应的共形测量
在本文中,我们研究了(反)全态对应的极限集上保角量度的存在性和性质。我们证明,如果临界分量满足$1\leq \delta_\operatorname{crit}}(x) <\+infty, $F$在极限集$\Lambda_+(x)$上是(相对)双曲的、并且 $\Lambda_+(x)$ 是最小的,那么 $\Lambda_+(x)$ 允许 $F$ 的非原子共形度量,并且 $\Lambda_+(x)$ 的 Hausdorff 维度严格小于 2。作为特例,这表明对于模态曼德尔布罗特集双曲分量内部的参数 $a$,Bullett--Penrose 对应的极限集 $F_a$ 具有非原子共形度量,且其 Hausdorff 维度严格小于 2。在其定义函数 $f$ 的一些额外假设下,LLMM 对应也有同样的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信