How noise affects memory in linear recurrent networks

JingChuan Guan, Tomoyuki Kubota, Yasuo Kuniyoshi, Kohei Nakajima
{"title":"How noise affects memory in linear recurrent networks","authors":"JingChuan Guan, Tomoyuki Kubota, Yasuo Kuniyoshi, Kohei Nakajima","doi":"arxiv-2409.03187","DOIUrl":null,"url":null,"abstract":"The effects of noise on memory in a linear recurrent network are\ntheoretically investigated. Memory is characterized by its ability to store\nprevious inputs in its instantaneous state of network, which receives a\ncorrelated or uncorrelated noise. Two major properties are revealed: First, the\nmemory reduced by noise is uniquely determined by the noise's power spectral\ndensity (PSD). Second, the memory will not decrease regardless of noise\nintensity if the PSD is in a certain class of distribution (including power\nlaw). The results are verified using the human brain signals, showing good\nagreement.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The effects of noise on memory in a linear recurrent network are theoretically investigated. Memory is characterized by its ability to store previous inputs in its instantaneous state of network, which receives a correlated or uncorrelated noise. Two major properties are revealed: First, the memory reduced by noise is uniquely determined by the noise's power spectral density (PSD). Second, the memory will not decrease regardless of noise intensity if the PSD is in a certain class of distribution (including power law). The results are verified using the human brain signals, showing good agreement.
噪声如何影响线性递归网络的记忆
本文从理论上研究了噪声对线性递归网络记忆的影响。记忆的特点是,网络在接收到相关或非相关噪声时,能在其瞬时状态下存储之前的输入。研究揭示了两个主要特性:首先,由噪声导致的记忆力降低是由噪声的功率谱密度(PSD)唯一决定的。其次,如果 PSD 属于某一类分布(包括幂律),则无论噪声强度如何,记忆力都不会下降。结果通过人脑信号验证,显示出良好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信