Energy Transport in Random Perturbations of Mechanical Systems

Anna Maria Cherubini, Marian Gidea
{"title":"Energy Transport in Random Perturbations of Mechanical Systems","authors":"Anna Maria Cherubini, Marian Gidea","doi":"arxiv-2409.03132","DOIUrl":null,"url":null,"abstract":"We describe a mechanism for transport of energy in a mechanical system\nconsisting of a pendulum and a rotator subject to a random perturbation. The\nperturbation that we consider is the product of a Hamiltonian vector field and\na scalar, continuous, stationary Gaussian process with H\\\"older continuous\nrealizations, scaled by a smallness parameter. We show that for almost every\nrealization of the stochastic process, there is a distinguished set of times\nfor which there exists a random normally hyperbolic invariant manifold with\nassociated stable and unstable manifolds that intersect transversally, for all\nsufficiently small values of the smallness parameter. We derive the existence\nof orbits along which the energy changes over time by an amount proportional to\nthe smallness parameter. This result is related to the Arnold diffusion problem\nfor Hamiltonian systems, which we treat here in the random setting.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We describe a mechanism for transport of energy in a mechanical system consisting of a pendulum and a rotator subject to a random perturbation. The perturbation that we consider is the product of a Hamiltonian vector field and a scalar, continuous, stationary Gaussian process with H\"older continuous realizations, scaled by a smallness parameter. We show that for almost every realization of the stochastic process, there is a distinguished set of times for which there exists a random normally hyperbolic invariant manifold with associated stable and unstable manifolds that intersect transversally, for all sufficiently small values of the smallness parameter. We derive the existence of orbits along which the energy changes over time by an amount proportional to the smallness parameter. This result is related to the Arnold diffusion problem for Hamiltonian systems, which we treat here in the random setting.
机械系统随机扰动中的能量传输
我们描述了一个由摆锤和旋转器组成的机械系统在随机扰动下的能量传输机制。我们所考虑的扰动是一个汉密尔顿矢量场和一个标量、连续、静止的高斯过程的乘积,该过程具有 H\"older continuous realizations,由一个小度参数缩放。我们证明,对于随机过程的几乎每一次变现,都存在一组不同的时间,在这些时间里,对于所有足够小的小度参数值,都存在一个随机的正双曲不变流形,其相关的稳定流形和不稳定流形横向相交。我们推导出能量随时间变化的量与小度参数成正比的轨道的存在性。这一结果与哈密顿系统的阿诺德扩散问题有关,我们在这里以随机设置来处理这一问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信