Integrability of polynomial vector fields and a dual problem

Tatjana Petek, Valery Romanovski
{"title":"Integrability of polynomial vector fields and a dual problem","authors":"Tatjana Petek, Valery Romanovski","doi":"arxiv-2409.04322","DOIUrl":null,"url":null,"abstract":"We investigate the integrability of polynomial vector fields through the lens\nof duality in parameter spaces. We examine formal power series solutions\nanihilated by differential operators and explore the properties of the\nintegrability variety in relation to the invariants of the associated Lie\ngroup. Our study extends to differential operators on affine algebraic\nvarieties, highlighting the inartistic connection between these operators and\nlocal analytic first integrals. To illustrate the duality the case of quadratic\nvector fields is considered in detail.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the integrability of polynomial vector fields through the lens of duality in parameter spaces. We examine formal power series solutions anihilated by differential operators and explore the properties of the integrability variety in relation to the invariants of the associated Lie group. Our study extends to differential operators on affine algebraic varieties, highlighting the inartistic connection between these operators and local analytic first integrals. To illustrate the duality the case of quadratic vector fields is considered in detail.
多项式向量场的积分性和对偶问题
我们从参数空间对偶性的角度研究多项式向量场的可整性。我们考察了微分算子虚化的形式幂级数解,并探讨了与相关李群不变式有关的可整性种类的性质。我们的研究扩展到仿射代数变量上的微分算子,强调了这些算子与局部解析第一积分之间的非艺术性联系。为了说明二元性,我们详细考虑了二次向量场的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信