Quantitative Estimates for the Size of the Zsigmondy Set in Arithmetic Dynamics

Yang Gao, Qingzhong Ji
{"title":"Quantitative Estimates for the Size of the Zsigmondy Set in Arithmetic Dynamics","authors":"Yang Gao, Qingzhong Ji","doi":"arxiv-2409.04710","DOIUrl":null,"url":null,"abstract":"Let \\( K \\) be a number field. We provide quantitative estimates for the size\nof the Zsigmondy set of an integral ideal sequence generated by iterating a\npolynomial function \\(\\varphi(z) \\in K[z]\\) at a wandering point \\(\\alpha \\in\nK.\\)","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let \( K \) be a number field. We provide quantitative estimates for the size of the Zsigmondy set of an integral ideal sequence generated by iterating a polynomial function \(\varphi(z) \in K[z]\) at a wandering point \(\alpha \in K.\)
算术动力学中齐格蒙迪集大小的定量估算
让 \( K \) 是一个数域。我们提供了在一个游走点 \(\alpha \inK.\)上迭代apolynomial函数 \(\varphi(z) \in K[z]\)所产生的积分理想序列的Zsigmondy集合大小的定量估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信