Periodic points of endperiodic maps

Ellis Buckminster
{"title":"Periodic points of endperiodic maps","authors":"Ellis Buckminster","doi":"arxiv-2409.05963","DOIUrl":null,"url":null,"abstract":"Let $g\\colon L\\rightarrow L$ be an atoroidal, endperiodic map on an infinite\ntype surface $L$ with no boundary and finitely many ends, each of which is\naccumulated by genus. By work of Landry, Minsky, and Taylor, $g$ is isotopic to\na spun pseudo-Anosov map $f$. We show that spun pseudo-Anosov maps minimize the\nnumber of periodic points of period $n$ for sufficiently high $n$ over all maps\nin their homotopy class, strengthening a theorem of Landry, Minsky, and Taylor.\nWe also show that the same theorem holds for atoroidal Handel--Miller maps when\nyou only consider periodic points that lie in the intersection of the stable\nand unstable laminations.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"188 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $g\colon L\rightarrow L$ be an atoroidal, endperiodic map on an infinite type surface $L$ with no boundary and finitely many ends, each of which is accumulated by genus. By work of Landry, Minsky, and Taylor, $g$ is isotopic to a spun pseudo-Anosov map $f$. We show that spun pseudo-Anosov maps minimize the number of periodic points of period $n$ for sufficiently high $n$ over all maps in their homotopy class, strengthening a theorem of Landry, Minsky, and Taylor. We also show that the same theorem holds for atoroidal Handel--Miller maps when you only consider periodic points that lie in the intersection of the stable and unstable laminations.
端周期图的周期点
让 $g\colon L\rightarrow L$ 是一个无穷型曲面 $L$ 上的无环形、末端周期映射,它没有边界,有有限多个末端,每个末端都是按属累加的。根据兰德里、明斯基和泰勒的研究,$g$ 与旋转伪阿诺索夫图$f$ 是同素异形的。我们证明,在其同调类中的所有映射中,在足够高的 $n$ 条件下,纺锤伪阿诺索夫映射会使周期为 $n$ 的周期点数量最小化,这加强了 Landry、Minsky 和 Taylor 的定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信