Existence of ACIM for Piecewise Expanding $C^{1+\varepsilon}$ maps

Aparna Rajput, Paweł Góra
{"title":"Existence of ACIM for Piecewise Expanding $C^{1+\\varepsilon}$ maps","authors":"Aparna Rajput, Paweł Góra","doi":"arxiv-2409.06076","DOIUrl":null,"url":null,"abstract":"In this paper, we establish Lasota-Yorke inequality for the Frobenius-Perron\nOperator of a piecewise expanding $C^{1+\\varepsilon}$ map of an interval. By\nadapting this inequality to satisfy the assumptions of the Ionescu-Tulcea and\nMarinescu ergodic theorem \\cite{ionescu1950}, we demonstrate the existence of\nan absolutely continuous invariant measure (ACIM) for the map. Furthermore, we\nprove the quasi-compactness of the Frobenius-Perron operator induced by the\nmap. Additionally, we explore significant properties of the system, including\nweak mixing and exponential decay of correlations.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we establish Lasota-Yorke inequality for the Frobenius-Perron Operator of a piecewise expanding $C^{1+\varepsilon}$ map of an interval. By adapting this inequality to satisfy the assumptions of the Ionescu-Tulcea and Marinescu ergodic theorem \cite{ionescu1950}, we demonstrate the existence of an absolutely continuous invariant measure (ACIM) for the map. Furthermore, we prove the quasi-compactness of the Frobenius-Perron operator induced by the map. Additionally, we explore significant properties of the system, including weak mixing and exponential decay of correlations.
片断展开 $C^{1+\varepsilon}$ 地图的 ACIM 存在性
在本文中,我们为区间的片断膨胀$C^{1+\varepsilon}$映射的弗罗贝纽斯-珀隆运算符建立了拉索塔-约克不等式。通过调整该不等式以满足 Ionescu-Tulcea andMarinescu ergodic theorem (cite{ionescu1950})的假设,我们证明了该映射存在绝对连续不变度量(ACIM)。此外,我们还证明了由该映射诱导的弗罗贝纽斯-佩伦算子的准紧凑性。此外,我们还探讨了该系统的重要性质,包括弱混合和相关性的指数衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信