A surprising regularizing effect of the nonlinear semigroup associated to the semilinear heat equation and applications to reaction diffusion systems

Said Kouachi
{"title":"A surprising regularizing effect of the nonlinear semigroup associated to the semilinear heat equation and applications to reaction diffusion systems","authors":"Said Kouachi","doi":"arxiv-2409.06606","DOIUrl":null,"url":null,"abstract":"In this paper we prove that positive weak solutions for quasilinear parabolic\nequations on bounded domains subject to homogenous Neumann boundary conditions\nbecme classical and global under the unique condition that the reaction doesn't\nchange sign after certain positive time. We apply this result to reaction\ndiffusion systems and prove global existence of theirs positive weak solutions\nunder the same condition on theirs reactions. The nonlinearities growth isn't\ntaken in consideration. The proof is based on the maximum principle.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we prove that positive weak solutions for quasilinear parabolic equations on bounded domains subject to homogenous Neumann boundary conditions becme classical and global under the unique condition that the reaction doesn't change sign after certain positive time. We apply this result to reaction diffusion systems and prove global existence of theirs positive weak solutions under the same condition on theirs reactions. The nonlinearities growth isn't taken in consideration. The proof is based on the maximum principle.
与半线性热方程相关的非线性半群的惊人正则效应及其在反应扩散系统中的应用
在本文中,我们证明了在同源 Neumann 边界条件下,有界域上的准线性抛物线方程的正弱解在一定正时间后反应不改变符号的唯一条件下是经典的和全局的。我们将这一结果应用于反应扩散系统,并证明了在相同的反应条件下,其正向弱解的全局存在性。我们没有考虑非线性增长。证明基于最大值原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信