Smartphone-based Eye Tracking System using Edge Intelligence and Model Optimisation

Nishan Gunawardena, Gough Yumu Lui, Jeewani Anupama Ginige, Bahman Javadi
{"title":"Smartphone-based Eye Tracking System using Edge Intelligence and Model Optimisation","authors":"Nishan Gunawardena, Gough Yumu Lui, Jeewani Anupama Ginige, Bahman Javadi","doi":"arxiv-2408.12463","DOIUrl":null,"url":null,"abstract":"A significant limitation of current smartphone-based eye-tracking algorithms\nis their low accuracy when applied to video-type visual stimuli, as they are\ntypically trained on static images. Also, the increasing demand for real-time\ninteractive applications like games, VR, and AR on smartphones requires\novercoming the limitations posed by resource constraints such as limited\ncomputational power, battery life, and network bandwidth. Therefore, we\ndeveloped two new smartphone eye-tracking techniques for video-type visuals by\ncombining Convolutional Neural Networks (CNN) with two different Recurrent\nNeural Networks (RNN), namely Long Short Term Memory (LSTM) and Gated Recurrent\nUnit (GRU). Our CNN+LSTM and CNN+GRU models achieved an average Root Mean\nSquare Error of 0.955cm and 1.091cm, respectively. To address the computational\nconstraints of smartphones, we developed an edge intelligence architecture to\nenhance the performance of smartphone-based eye tracking. We applied various\noptimisation methods like quantisation and pruning to deep learning models for\nbetter energy, CPU, and memory usage on edge devices, focusing on real-time\nprocessing. Using model quantisation, the model inference time in the CNN+LSTM\nand CNN+GRU models was reduced by 21.72% and 19.50%, respectively, on edge\ndevices.","PeriodicalId":501291,"journal":{"name":"arXiv - CS - Performance","volume":"88 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.12463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A significant limitation of current smartphone-based eye-tracking algorithms is their low accuracy when applied to video-type visual stimuli, as they are typically trained on static images. Also, the increasing demand for real-time interactive applications like games, VR, and AR on smartphones requires overcoming the limitations posed by resource constraints such as limited computational power, battery life, and network bandwidth. Therefore, we developed two new smartphone eye-tracking techniques for video-type visuals by combining Convolutional Neural Networks (CNN) with two different Recurrent Neural Networks (RNN), namely Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU). Our CNN+LSTM and CNN+GRU models achieved an average Root Mean Square Error of 0.955cm and 1.091cm, respectively. To address the computational constraints of smartphones, we developed an edge intelligence architecture to enhance the performance of smartphone-based eye tracking. We applied various optimisation methods like quantisation and pruning to deep learning models for better energy, CPU, and memory usage on edge devices, focusing on real-time processing. Using model quantisation, the model inference time in the CNN+LSTM and CNN+GRU models was reduced by 21.72% and 19.50%, respectively, on edge devices.
利用边缘智能和模型优化的智能手机眼球跟踪系统
目前基于智能手机的眼动跟踪算法的一个显著局限是,当应用于视频类型的视觉刺激时,其准确性较低,因为这些算法通常是在静态图像上进行训练的。此外,智能手机对游戏、VR 和 AR 等实时交互应用的需求日益增长,这就要求克服资源限制带来的局限性,如有限的计算能力、电池寿命和网络带宽。因此,我们将卷积神经网络(CNN)与两种不同的递归神经网络(RNN)(即长短期记忆(LSTM)和门控递归单元(GRU))相结合,开发了两种新的智能手机眼球跟踪技术,用于视频类型的视觉效果。我们的 CNN+LSTM 和 CNN+GRU 模型的平均均方根误差分别为 0.955 厘米和 1.091 厘米。针对智能手机的计算限制,我们开发了一种边缘智能架构,以提高基于智能手机的眼动追踪性能。我们对深度学习模型采用了量化和剪枝等多种优化方法,以降低边缘设备上的能耗、CPU 和内存使用率,重点关注实时处理。通过模型量化,CNN+LSTM 和 CNN+GRU 模型的推理时间在边缘设备上分别缩短了 21.72% 和 19.50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信