Exploring GPU-to-GPU Communication: Insights into Supercomputer Interconnects

Daniele De Sensi, Lorenzo Pichetti, Flavio Vella, Tiziano De Matteis, Zebin Ren, Luigi Fusco, Matteo Turisini, Daniele Cesarini, Kurt Lust, Animesh Trivedi, Duncan Roweth, Filippo Spiga, Salvatore Di Girolamo, Torsten Hoefler
{"title":"Exploring GPU-to-GPU Communication: Insights into Supercomputer Interconnects","authors":"Daniele De Sensi, Lorenzo Pichetti, Flavio Vella, Tiziano De Matteis, Zebin Ren, Luigi Fusco, Matteo Turisini, Daniele Cesarini, Kurt Lust, Animesh Trivedi, Duncan Roweth, Filippo Spiga, Salvatore Di Girolamo, Torsten Hoefler","doi":"arxiv-2408.14090","DOIUrl":null,"url":null,"abstract":"Multi-GPU nodes are increasingly common in the rapidly evolving landscape of\nexascale supercomputers. On these systems, GPUs on the same node are connected\nthrough dedicated networks, with bandwidths up to a few terabits per second.\nHowever, gauging performance expectations and maximizing system efficiency is\nchallenging due to different technologies, design options, and software layers.\nThis paper comprehensively characterizes three supercomputers - Alps, Leonardo,\nand LUMI - each with a unique architecture and design. We focus on performance\nevaluation of intra-node and inter-node interconnects on up to 4096 GPUs, using\na mix of intra-node and inter-node benchmarks. By analyzing its limitations and\nopportunities, we aim to offer practical guidance to researchers, system\narchitects, and software developers dealing with multi-GPU supercomputing. Our\nresults show that there is untapped bandwidth, and there are still many\nopportunities for optimization, ranging from network to software optimization.","PeriodicalId":501291,"journal":{"name":"arXiv - CS - Performance","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-GPU nodes are increasingly common in the rapidly evolving landscape of exascale supercomputers. On these systems, GPUs on the same node are connected through dedicated networks, with bandwidths up to a few terabits per second. However, gauging performance expectations and maximizing system efficiency is challenging due to different technologies, design options, and software layers. This paper comprehensively characterizes three supercomputers - Alps, Leonardo, and LUMI - each with a unique architecture and design. We focus on performance evaluation of intra-node and inter-node interconnects on up to 4096 GPUs, using a mix of intra-node and inter-node benchmarks. By analyzing its limitations and opportunities, we aim to offer practical guidance to researchers, system architects, and software developers dealing with multi-GPU supercomputing. Our results show that there is untapped bandwidth, and there are still many opportunities for optimization, ranging from network to software optimization.
探索 GPU 之间的通信:超级计算机互联的启示
在快速发展的超大规模超级计算机领域,多 GPU 节点越来越常见。在这些系统中,同一节点上的 GPU 通过专用网络连接,带宽最高可达每秒数太比特。然而,由于技术、设计方案和软件层的不同,衡量性能预期和最大化系统效率是一项挑战。我们重点使用节点内和节点间的混合基准,对多达 4096 个 GPU 的节点内和节点间互连进行性能评估。通过分析其局限性和机遇,我们旨在为研究人员、系统架构师和软件开发人员提供处理多 GPU 超级计算的实用指导。我们的研究结果表明,带宽还有待开发,从网络优化到软件优化,仍有很多优化机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信