The Category of $$\omega $$ -Effect Algebras: Tensor Product and $$\omega $$ -Completion

Order Pub Date : 2024-08-30 DOI:10.1007/s11083-024-09680-y
Dominik Lachman
{"title":"The Category of $$\\omega $$ -Effect Algebras: Tensor Product and $$\\omega $$ -Completion","authors":"Dominik Lachman","doi":"10.1007/s11083-024-09680-y","DOIUrl":null,"url":null,"abstract":"<p>Effect algebras are certain ordered structures that serve as a general framework for studying the algebraic semantics of quantum logic. We study effect algebras which obtain suprema of countable monotone sequences – so-called <span>\\(\\omega \\)</span>-effect algebras. This assumption is necessary to capture basic (non-discrete) probabilistic concepts. We establish a free <span>\\(\\omega \\)</span>-completion of effect algebras (i.e., a left adjoint to the functor that forgets the existence of <span>\\(\\omega \\)</span>-suprema) and the existence of a tensor product in the category of <span>\\(\\omega \\)</span>-effect algebras. These results are obtained by means of so-called test spaces. Test spaces form a category that contains effect algebras as a reflective subcategory, but provides more space for constructions.</p>","PeriodicalId":501237,"journal":{"name":"Order","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Order","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11083-024-09680-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Effect algebras are certain ordered structures that serve as a general framework for studying the algebraic semantics of quantum logic. We study effect algebras which obtain suprema of countable monotone sequences – so-called \(\omega \)-effect algebras. This assumption is necessary to capture basic (non-discrete) probabilistic concepts. We establish a free \(\omega \)-completion of effect algebras (i.e., a left adjoint to the functor that forgets the existence of \(\omega \)-suprema) and the existence of a tensor product in the category of \(\omega \)-effect algebras. These results are obtained by means of so-called test spaces. Test spaces form a category that contains effect algebras as a reflective subcategory, but provides more space for constructions.

$$\omega $$ -效应代数范畴:张量积和 $$\omega $$ -完成
效应代数是某些有序结构,是研究量子逻辑代数语义的一般框架。我们研究获得可数单调序列上界的效应代数--即所谓的 \(\omega \)-效应代数。这个假设对于捕捉基本的(非离散的)概率概念是必要的。我们建立了效应布尔的自由(\(\omega \)-)完备性(即遗忘了\(\omega \)-上界的存在的函子的左邻接)以及\(\omega \)-效应布尔范畴中张量积的存在。这些结果是通过所谓的测试空间得到的。测试空间构成了一个包含效应代数的范畴,作为一个反映子范畴,但为构造提供了更多的空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信