The Impact of Shear on Disk Galaxy Star Formation Rates

Xena L. Fortune-Bashee, Jiayi Sun, Jonathan C. Tan
{"title":"The Impact of Shear on Disk Galaxy Star Formation Rates","authors":"Xena L. Fortune-Bashee, Jiayi Sun, Jonathan C. Tan","doi":"arxiv-2409.07622","DOIUrl":null,"url":null,"abstract":"Determining the physical processes that control galactic-scale star formation\nrates is essential for an improved understanding of galaxy evolution. The role\nof orbital shear is currently unclear, with some models expecting reduced star\nformation rates (SFRs) and efficiencies (SFEs) with increasing shear, e.g., if\nshear stabilizes gas against gravitational collapse, while others predicting\nenhanced rates, e.g., if shear-driven collisions between giant molecular clouds\n(GMCs) trigger star formation. Expanding on the analysis of 16 galaxies by\nSuwannajak, Tan, & Leroy (2014), we assess the shear dependence of SFE per\norbital time ($\\epsilon_\\mathrm{orb}$) in 49 galaxies selected from the\nPHANGS-ALMA survey. In particular, we test a prediction of the shear-driven GMC\ncollision model that $\\epsilon_\\mathrm{orb}\\propto(1-0.7\\beta)$, where\n$\\beta\\equiv{d}\\:\\mathrm{ln}\\:v_\\mathrm{circ}/d\\:\\mathrm{ln}\\:r$, i.e., SFE per\norbital time declines with decreasing shear. We fit the function\n$\\epsilon_\\mathrm{orb}=\\epsilon_\\mathrm{orb,\\,0}(1-\\alpha_\\mathrm{CC}\\beta)$\nfinding $\\alpha_\\mathrm{CC}\\simeq0.76\\pm0.16$; an alternative fit with\n$\\epsilon_\\mathrm{orb}$ normalized by the median value in each galaxy yields\n$\\alpha_\\mathrm{CC}^*=0.80\\pm0.15$. These results are in good agreement with\nthe prediction of the shear-driven GMC collision theory. We also examine the\nimpact of a galactic bar on $\\epsilon_\\mathrm{orb}$ finding a modest decrease\nin SFE in the presence of bar, which can be attributed to lower rates of shear\nin these regions. We discuss the implications of our results for the GMC life\ncycle and environmental dependence of star formation activity.","PeriodicalId":501187,"journal":{"name":"arXiv - PHYS - Astrophysics of Galaxies","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Astrophysics of Galaxies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Determining the physical processes that control galactic-scale star formation rates is essential for an improved understanding of galaxy evolution. The role of orbital shear is currently unclear, with some models expecting reduced star formation rates (SFRs) and efficiencies (SFEs) with increasing shear, e.g., if shear stabilizes gas against gravitational collapse, while others predicting enhanced rates, e.g., if shear-driven collisions between giant molecular clouds (GMCs) trigger star formation. Expanding on the analysis of 16 galaxies by Suwannajak, Tan, & Leroy (2014), we assess the shear dependence of SFE per orbital time ($\epsilon_\mathrm{orb}$) in 49 galaxies selected from the PHANGS-ALMA survey. In particular, we test a prediction of the shear-driven GMC collision model that $\epsilon_\mathrm{orb}\propto(1-0.7\beta)$, where $\beta\equiv{d}\:\mathrm{ln}\:v_\mathrm{circ}/d\:\mathrm{ln}\:r$, i.e., SFE per orbital time declines with decreasing shear. We fit the function $\epsilon_\mathrm{orb}=\epsilon_\mathrm{orb,\,0}(1-\alpha_\mathrm{CC}\beta)$ finding $\alpha_\mathrm{CC}\simeq0.76\pm0.16$; an alternative fit with $\epsilon_\mathrm{orb}$ normalized by the median value in each galaxy yields $\alpha_\mathrm{CC}^*=0.80\pm0.15$. These results are in good agreement with the prediction of the shear-driven GMC collision theory. We also examine the impact of a galactic bar on $\epsilon_\mathrm{orb}$ finding a modest decrease in SFE in the presence of bar, which can be attributed to lower rates of shear in these regions. We discuss the implications of our results for the GMC life cycle and environmental dependence of star formation activity.
剪切力对盘状星系恒星形成率的影响
确定控制星系尺度恒星形成率的物理过程对于更好地理解星系演化至关重要。轨道剪切力的作用目前还不清楚,一些模型预期随着剪切力的增加,恒星形成率(SFRs)和效率(SFEs)会降低,例如,如果剪切力使气体稳定以抵御引力塌缩;而另一些模型则预测恒星形成率会提高,例如,如果剪切力驱动的巨分子云(GMCs)之间的碰撞会引发恒星形成。在Suwannajak, Tan, & Leroy(2014)对16个星系分析的基础上,我们评估了从PHANGS-ALMA巡天中选取的49个星系的SFE围轨道时间($\epsilon_\mathrm{orb}$)的剪切依赖性。特别是,我们检验了剪切力驱动的GMC碰撞模型的预言:$epsilon_\mathrm{orb}\propto(1-0.7\beta)$,其中$\beta\equiv{d}\:\mathrm{ln}\:v_\mathrm{circ}/d\:\mathrm{ln}\:r$,也就是说,SFE围轨道时间随着剪切力的减小而减小。我们拟合了函数$epsilon_\mathrm{orb}=\epsilon_\mathrm{orb,\,0}(1-\alpha_\mathrm{CC}\beta)$,发现$\alpha_\mathrm{CC}\simeq0.76\pm0.16$;用每个星系的中值归一化的$epsilon_\mathrm{orb}$进行另一种拟合,得到$α_\mathrm{CC}^*=0.80\pm0.15$。这些结果与剪切力驱动的GMC碰撞理论的预测结果非常吻合。我们还研究了星系条带对$\epsilon_\mathrm{orb}$的影响,发现在条带存在的情况下,SFE会有适度的下降,这可以归因于这些区域较低的剪切率。我们讨论了我们的结果对GMC生命周期和恒星形成活动的环境依赖性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信