Adaptive Back-stepping Control of Servo Systems With Asymmetric Dead Zone

IF 2.5 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Xue Wang, Shubo Wang
{"title":"Adaptive Back-stepping Control of Servo Systems With Asymmetric Dead Zone","authors":"Xue Wang, Shubo Wang","doi":"10.1007/s12555-024-0202-z","DOIUrl":null,"url":null,"abstract":"<p>In this paper, an adaptive back-stepping control scheme based on the command filter is proposed for the servo system with current constraints and non-symmetric dead zone. First, a novel system transformation scheme is designed to transform the servo system with current constraints into the equivalent “unconstrained”. A security boundary is incorporated into the designed strategy to restrict the activation state of the constraint mechanism. Second, the asymmetric dead zone nonlinearities can be represented into a parameterized form by using a continuous piecewise linear neural network (CPLNN). Moreover, an adaptive law with guaranteed convergence is used to online update the CPLNN weights so as to derive the dead zone characteristic parameters and then compensate for the asymmetric dead zone. Then, the command filter is introduced into the back-stepping control strategy to avoid the complexity explosion. The stability analysis of the closed-loop system is proved by the Lyapunov stability theory. Finally, the effectiveness and feasibility of the proposed control scheme are validated through the real-time experiments on a permanent magnet synchronous motor (PMSM) platform.</p>","PeriodicalId":54965,"journal":{"name":"International Journal of Control Automation and Systems","volume":"1 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Control Automation and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12555-024-0202-z","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, an adaptive back-stepping control scheme based on the command filter is proposed for the servo system with current constraints and non-symmetric dead zone. First, a novel system transformation scheme is designed to transform the servo system with current constraints into the equivalent “unconstrained”. A security boundary is incorporated into the designed strategy to restrict the activation state of the constraint mechanism. Second, the asymmetric dead zone nonlinearities can be represented into a parameterized form by using a continuous piecewise linear neural network (CPLNN). Moreover, an adaptive law with guaranteed convergence is used to online update the CPLNN weights so as to derive the dead zone characteristic parameters and then compensate for the asymmetric dead zone. Then, the command filter is introduced into the back-stepping control strategy to avoid the complexity explosion. The stability analysis of the closed-loop system is proved by the Lyapunov stability theory. Finally, the effectiveness and feasibility of the proposed control scheme are validated through the real-time experiments on a permanent magnet synchronous motor (PMSM) platform.

具有非对称死区的伺服系统的自适应后步进控制
本文针对具有电流约束和非对称死区的伺服系统,提出了一种基于指令滤波器的自适应后步法控制方案。首先,设计了一种新颖的系统转换方案,将有电流约束的伺服系统转换为等效的 "无约束 "系统。在设计的策略中加入了安全边界,以限制约束机制的激活状态。其次,通过使用连续片断线性神经网络(CPLNN),可将非对称死区非线性特性表示为参数化形式。此外,还采用了一种保证收敛性的自适应法则来在线更新 CPLNN 权重,从而得出死区特征参数,进而对非对称死区进行补偿。然后,在后步法控制策略中引入指令滤波器,以避免复杂性爆炸。利用李雅普诺夫稳定性理论证明了闭环系统的稳定性分析。最后,通过在永磁同步电机(PMSM)平台上的实时实验,验证了所提控制方案的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Control Automation and Systems
International Journal of Control Automation and Systems 工程技术-自动化与控制系统
CiteScore
5.80
自引率
21.90%
发文量
343
审稿时长
8.7 months
期刊介绍: International Journal of Control, Automation and Systems is a joint publication of the Institute of Control, Robotics and Systems (ICROS) and the Korean Institute of Electrical Engineers (KIEE). The journal covers three closly-related research areas including control, automation, and systems. The technical areas include Control Theory Control Applications Robotics and Automation Intelligent and Information Systems The Journal addresses research areas focused on control, automation, and systems in electrical, mechanical, aerospace, chemical, and industrial engineering in order to create a strong synergy effect throughout the interdisciplinary research areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信