A derivative-Hilbert operator acting from logarithmic Bloch spaces to Bergman spaces

IF 1.2 4区 数学 Q1 MATHEMATICS
Shanli Ye, Yun Xu
{"title":"A derivative-Hilbert operator acting from logarithmic Bloch spaces to Bergman spaces","authors":"Shanli Ye, Yun Xu","doi":"10.1007/s10473-024-0516-1","DOIUrl":null,"url":null,"abstract":"<p>Let <i>μ</i> be a positive Borel measure on the interval [0, 1). The Hankel matrix <span>\\(\\cal{H}_{\\mu}=(\\mu_{n,k})_{n,k\\geq 0}\\)</span> with entries <i>μ</i><sub><i>n,k</i></sub> = <i>μ</i><sub><i>n</i>+<i>k</i></sub>, where <i>μ</i><sub><i>n</i></sub> = ⨜<sub>[0,1)</sub> <i>t</i><sup><i>n</i></sup>d<i>μ</i>(<i>t</i>), induces, formally, the operator</p><span>$$\\cal{DH}_\\mu(f)(z)=\\sum\\limits_{n=0}^\\infty\\left(\\sum\\limits_{k=0}^\\infty \\mu_{n,k}a_k\\right)(n+1)z^n, ~z\\in \\mathbb{D},$$</span><p>where <span>\\(f(z)=\\sum\\limits_{n=0}^\\infty a_nz^n\\)</span> is an analytic function in ⅅ. We characterize the measures <i>μ</i> for which <span>\\(\\cal{DH}_\\mu\\)</span> is bounded (resp., compact) operator from the logarithmic Bloch space <span>\\(\\mathscr{B}_{L^{\\alpha}}\\)</span> into the Bergman space <span>\\(\\cal{A}^p\\)</span>, where 0 ≤ <i>α</i> &lt; ∞, 0 &lt; <i>p</i> &lt; ∞. We also characterize the measures <i>μ</i> for which <span>\\(\\cal{DH}_\\mu\\)</span> is bounded (resp., compact) operator from the logarithmic Bloch space <span>\\(\\mathscr{B}_{L^{\\alpha}}\\)</span> into the classical Bloch space <span>\\(\\mathscr{B}\\)</span>.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"64 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0516-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let μ be a positive Borel measure on the interval [0, 1). The Hankel matrix \(\cal{H}_{\mu}=(\mu_{n,k})_{n,k\geq 0}\) with entries μn,k = μn+k, where μn = ⨜[0,1) tndμ(t), induces, formally, the operator

$$\cal{DH}_\mu(f)(z)=\sum\limits_{n=0}^\infty\left(\sum\limits_{k=0}^\infty \mu_{n,k}a_k\right)(n+1)z^n, ~z\in \mathbb{D},$$

where \(f(z)=\sum\limits_{n=0}^\infty a_nz^n\) is an analytic function in ⅅ. We characterize the measures μ for which \(\cal{DH}_\mu\) is bounded (resp., compact) operator from the logarithmic Bloch space \(\mathscr{B}_{L^{\alpha}}\) into the Bergman space \(\cal{A}^p\), where 0 ≤ α < ∞, 0 < p < ∞. We also characterize the measures μ for which \(\cal{DH}_\mu\) is bounded (resp., compact) operator from the logarithmic Bloch space \(\mathscr{B}_{L^{\alpha}}\) into the classical Bloch space \(\mathscr{B}\).

从对数布洛赫空间作用于伯格曼空间的导数-希尔伯特算子
让 μ 是区间 [0, 1) 上的正伯尔量。汉克尔矩阵((cal{H}_{\mu}=(\mu_{n,k})_{n,k\geq 0}\)的条目为 μn,k = μn+k,其中 μn = ⨜[0,1) tndμ(t),形式上诱导、算子$$cal{DH}_\mu(f)(z)=\sum\limits_{n=0}^\infty\left(\sum\limits_{k=0}^\infty \mu_{n,k}a_k\right)(n+1)z^n、~z\in \mathbb{D},$$ 其中(f(z)=\sum\limits_{n=0}^\infty a_nz^n\)是ⅅ中的解析函数。我们描述了μ的度量,对于这些度量,\(\cal{DH}_\mu\)是从对数布洛赫空间\(\mathscr{B}_{L^{\alpha}}\)到伯格曼空间\(\cal{A}^p\)的有界(或者说,紧凑)算子,其中0≤α < ∞, 0 < p <∞。我们还描述了从对数布洛赫空间\(\mathscr{B}_{L^{\alpha}}\)到经典布洛赫空间\(\mathscr{B}\)的有界(或紧凑)算子μ的度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信