{"title":"Global convergence of a cautious projection BFGS algorithm for nonconvex problems without gradient Lipschitz continuity","authors":"Gonglin Yuan, Xiong Zhao, Jiajia Yu","doi":"10.1007/s10473-024-0506-3","DOIUrl":null,"url":null,"abstract":"<p>A cautious projection BFGS method is proposed for solving nonconvex unconstrained optimization problems. The global convergence of this method as well as a stronger general convergence result can be proven without a gradient Lipschitz continuity assumption, which is more in line with the actual problems than the existing modified BFGS methods and the traditional BFGS method. Under some additional conditions, the method presented has a superlinear convergence rate, which can be regarded as an extension and supplement of BFGS-type methods with the projection technique. Finally, the effectiveness and application prospects of the proposed method are verified by numerical experiments.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0506-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A cautious projection BFGS method is proposed for solving nonconvex unconstrained optimization problems. The global convergence of this method as well as a stronger general convergence result can be proven without a gradient Lipschitz continuity assumption, which is more in line with the actual problems than the existing modified BFGS methods and the traditional BFGS method. Under some additional conditions, the method presented has a superlinear convergence rate, which can be regarded as an extension and supplement of BFGS-type methods with the projection technique. Finally, the effectiveness and application prospects of the proposed method are verified by numerical experiments.
期刊介绍:
Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981.
The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.