Toeplitz determinants in one and higher dimensions

IF 1.2 4区 数学 Q1 MATHEMATICS
Surya Giri, S. Sivaprasad Kumar
{"title":"Toeplitz determinants in one and higher dimensions","authors":"Surya Giri, S. Sivaprasad Kumar","doi":"10.1007/s10473-024-0517-0","DOIUrl":null,"url":null,"abstract":"<p>In this study, we derive the sharp bounds of certain Toeplitz determinants whose entries are the coefficients of holomorphic functions belonging to a class defined on the unit disk <span>\\(\\mathbb{U}\\)</span>. Furthermore, these results are extended to a class of holomorphic functions on the unit ball in a complex Banach space and on the unit polydisc in ℂ<sup><i>n</i></sup>. The obtained results provide the bounds of Toeplitz determinants in higher dimensions for various subclasses of normalized univalent functions.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"23 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0517-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we derive the sharp bounds of certain Toeplitz determinants whose entries are the coefficients of holomorphic functions belonging to a class defined on the unit disk \(\mathbb{U}\). Furthermore, these results are extended to a class of holomorphic functions on the unit ball in a complex Banach space and on the unit polydisc in ℂn. The obtained results provide the bounds of Toeplitz determinants in higher dimensions for various subclasses of normalized univalent functions.

一维及更高维度的托普利兹行列式
在本研究中,我们推导了某些托普利兹行列式的尖锐边界,这些行列式的项是属于定义在单位圆盘 \(\mathbb{U}\)上的一类全纯函数的系数。此外,这些结果还扩展到了复巴纳赫空间中单位球和ℂn 中单位多圆盘上的一类全纯函数。所得到的结果为各种归一化等价函数子类提供了更高维度的托普利兹行列式的边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信