A singular Dirichlet problem for the Monge-Ampère type equation

IF 1.2 4区 数学 Q1 MATHEMATICS
Zhijun Zhang, Bo Zhang
{"title":"A singular Dirichlet problem for the Monge-Ampère type equation","authors":"Zhijun Zhang, Bo Zhang","doi":"10.1007/s10473-024-0520-5","DOIUrl":null,"url":null,"abstract":"<p>We consider the singular Dirichlet problem for the Monge-Ampère type equation <span>\\({\\rm det}\\ D^2 u=b(x)g(-u)(1+|\\nabla u|^2)^{q/2}, \\ u&lt;0, \\ x \\in \\Omega, \\ u|_{\\partial \\Omega}=0\\)</span>, where Ω is a strictly convex and bounded smooth domain in ℝ<sup><i>n</i></sup>, <i>q</i> ∈ [0, <i>n</i> +1), <i>g</i> ∈ <i>C</i><sup>∞</sup> (0, ∞) is positive and strictly decreasing in (0, ∞) with <span>\\(\\lim\\limits_{s\\rightarrow 0^+}g(s)=\\infty\\)</span>, and <i>b</i> ∈ <i>C</i><sup>∞</sup> (Ω) is positive in Ω. We obtain the existence, nonexistence and global asymptotic behavior of the convex solution to such a problem for more general <i>b</i> and <i>g</i>. Our approach is based on the Karamata regular variation theory and the construction of suitable sub-and super-solutions.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"4 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0520-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the singular Dirichlet problem for the Monge-Ampère type equation \({\rm det}\ D^2 u=b(x)g(-u)(1+|\nabla u|^2)^{q/2}, \ u<0, \ x \in \Omega, \ u|_{\partial \Omega}=0\), where Ω is a strictly convex and bounded smooth domain in ℝn, q ∈ [0, n +1), gC (0, ∞) is positive and strictly decreasing in (0, ∞) with \(\lim\limits_{s\rightarrow 0^+}g(s)=\infty\), and bC (Ω) is positive in Ω. We obtain the existence, nonexistence and global asymptotic behavior of the convex solution to such a problem for more general b and g. Our approach is based on the Karamata regular variation theory and the construction of suitable sub-and super-solutions.

Monge-Ampère 型方程的奇异 Dirichlet 问题
我们考虑 Monge-Ampère 型方程的奇异 Dirichlet 问题 \({\rm det}\ D^2 u=b(x)g(-u)(1+|\nabla u|^2)^{q/2}, \ u<;0, \ x \in \Omega, \ u|_{\partial \Omega}=0\), 其中 Ω 是 ℝn 中一个严格凸且有界的光滑域, q∈ [0, n +1), g∈ C∞ (0、∞)为正且在(0,∞)中严格递减,且(\lim\limits_{s\arrow 0^+}g(s)=\infty\),且 b∈ C∞ (Ω) 在Ω中为正。我们的方法基于卡拉马塔正则变异理论和合适的子解与超解的构造,得到了更一般的 b 和 g 的凸解的存在性、不存在性和全局渐近行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信