{"title":"A Quadratic Differential Feedback Method for Electrochemical Micro Machining","authors":"Lizhong Xu, Jipeng Wang","doi":"10.1007/s12541-024-01121-5","DOIUrl":null,"url":null,"abstract":"<p>Machining accuracy of the electrochemical micro machining with pulse voltage mainly depends on pulse width of the voltage signals. To give nanometer level machining resolution, an expensive picoseconds pulse power supply is required. In this paper, a quadratic differential feedback method for electrochemical micro machining is proposed. With the method, nanometer level machining resolution can be obtained easily by tuning feedback loop gain under micro second pulse width. Here, the circuits of the machining system are designed and analyzed, and the circuit equation and transfer function of the system are deduced. By the equation, the basic principle of the machining method is revealed and the equation of the machining resolution for the method is also given. By micro hole machining experiments, effects of the feedback gain on the resolution are investigated and compared with the calculated ones. Good agreement is obtained which illustrates the proposed machining method. Besides it, some micro structures are produced and nanometer level machining resolution is obtained.</p>","PeriodicalId":14359,"journal":{"name":"International Journal of Precision Engineering and Manufacturing","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Precision Engineering and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12541-024-01121-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Machining accuracy of the electrochemical micro machining with pulse voltage mainly depends on pulse width of the voltage signals. To give nanometer level machining resolution, an expensive picoseconds pulse power supply is required. In this paper, a quadratic differential feedback method for electrochemical micro machining is proposed. With the method, nanometer level machining resolution can be obtained easily by tuning feedback loop gain under micro second pulse width. Here, the circuits of the machining system are designed and analyzed, and the circuit equation and transfer function of the system are deduced. By the equation, the basic principle of the machining method is revealed and the equation of the machining resolution for the method is also given. By micro hole machining experiments, effects of the feedback gain on the resolution are investigated and compared with the calculated ones. Good agreement is obtained which illustrates the proposed machining method. Besides it, some micro structures are produced and nanometer level machining resolution is obtained.
期刊介绍:
The International Journal of Precision Engineering and Manufacturing accepts original contributions on all aspects of precision engineering and manufacturing. The journal specific focus areas include, but are not limited to:
- Precision Machining Processes
- Manufacturing Systems
- Robotics and Automation
- Machine Tools
- Design and Materials
- Biomechanical Engineering
- Nano/Micro Technology
- Rapid Prototyping and Manufacturing
- Measurements and Control
Surveys and reviews will also be planned in consultation with the Editorial Board.