Approximation problems on the smoothness classes

IF 1.2 4区 数学 Q1 MATHEMATICS
Yongping Liu, Man Lu
{"title":"Approximation problems on the smoothness classes","authors":"Yongping Liu, Man Lu","doi":"10.1007/s10473-024-0505-4","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the relative Kolmogorov <i>n</i>-widths of 2<i>π</i>-periodic smooth classes in <span>\\(\\widetilde{L}_{q}\\)</span>. We estimate the relative widths of <span>\\(\\widetilde{W}^{r}H^{\\omega}_{p}\\)</span> and its generalized class <i>K</i><sub><i>p</i></sub><i>H</i><sup><i>ω</i></sup> (<i>P</i><sub><i>r</i></sub>), where <i>K</i><sub><i>p</i></sub><i>H</i><sup><i>ω</i></sup> (<i>P</i><sub><i>r</i></sub>) is defined by a self-conjugate differential operator <i>P</i><sub><i>r</i></sub> (<i>D</i>) induced by</p><span>$$P_{r}(t):= t^{\\sigma} \\Pi_{j=1}^{l}(t^{2}- t_{j}^{2}),~t_{j} &gt; 0,~j=1, 2,\\cdots, l,~l \\geq 1,~\\sigma \\geq 1,~r=2l+\\sigma.$$</span><p>Also, the modulus of continuity of the <i>r</i>-th derivative, or <i>r</i>-th self-conjugate differential, does not exceed a given modulus of continuity <i>ω</i>. Then we obtain the asymptotic results, especially for the case <i>p</i> = ∞, 1 ≤ <i>q</i> ≤ ∞.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"166 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0505-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the relative Kolmogorov n-widths of 2π-periodic smooth classes in \(\widetilde{L}_{q}\). We estimate the relative widths of \(\widetilde{W}^{r}H^{\omega}_{p}\) and its generalized class KpHω (Pr), where KpHω (Pr) is defined by a self-conjugate differential operator Pr (D) induced by

$$P_{r}(t):= t^{\sigma} \Pi_{j=1}^{l}(t^{2}- t_{j}^{2}),~t_{j} > 0,~j=1, 2,\cdots, l,~l \geq 1,~\sigma \geq 1,~r=2l+\sigma.$$

Also, the modulus of continuity of the r-th derivative, or r-th self-conjugate differential, does not exceed a given modulus of continuity ω. Then we obtain the asymptotic results, especially for the case p = ∞, 1 ≤ q ≤ ∞.

平滑类的近似问题
本文研究了 2π 周期光滑类在\(\widetilde{L}_{q}\)中的相对柯尔莫哥洛夫 n 宽。我们估计了 \(\widetilde{W}^{r}H^{\omega}_{p}\) 及其广义类 KpHω (Pr) 的相对宽度,其中 KpHω (Pr) 是由$$P_{r}(t):= t^{sigma} Pi_{j=1}^{l}(t^{2}- t_{j}^{2}),~t_{j} > 0,~j=1, 2,\cdots, l,~l \geq 1,~\sigma \geq 1,~r=2l+\sigma.另外,r-th导数或r-th自共轭微分的连续性模数不超过给定的连续性模数ω。然后我们得到渐近结果,尤其是 p = ∞, 1 ≤ q ≤ ∞ 的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信