{"title":"A compact embedding result for nonlocal Sobolev spaces and multiplicity of sign-changing solutions for nonlocal Schrödinger equations","authors":"Xu Zhang, Hao Zhai, Fukun Zhao","doi":"10.1007/s10473-024-0512-5","DOIUrl":null,"url":null,"abstract":"<p>For any <i>s</i> ∈ (0, 1), let the nonlocal Sobolev space <i>X</i><sup><i>s</i></sup>(ℝ<sup><i>N</i></sup>) be the linear space of Lebesgue measure functions from ℝ<sup><i>N</i></sup> to ℝ such that any function <i>u</i> in <i>X</i><sup>s</sup>(ℝ<sup><i>N</i></sup>) belongs to <i>L</i><sup>2</sup>(ℝ<sup><i>N</i></sup>) and the function</p><span>$$(x,y)\\longmapsto\\big(u(x)-u(y)\\big)\\sqrt{K(x-y)}$$</span><p>is in <i>L</i><sup>2</sup>(ℝ<sup><i>N</i></sup>, ℝ<sup><i>N</i></sup>). First, we show, for a coercive function <i>V</i>(<i>x</i>), the subspace</p><span>$$E:=\\bigg\\{u\\in X^s(\\mathbb{R}^N):\\int_{\\mathbb{R}^N}V(x)u^2{\\rm d}x<+\\infty\\bigg\\}$$</span><p>of <i>X</i><sup><i>s</i></sup>(ℝ<sup><i>N</i></sup>) is embedded compactly into <i>L</i><sup><i>p</i></sup>(ℝ<sup><i>N</i></sup>) for <span>\\(p\\in[2,2_s^*)\\)</span>, where <span>\\(2_s^*\\)</span> is the fractional Sobolev critical exponent. In terms of applications, the existence of a least energy sign-changing solution and infinitely many sign-changing solutions of the nonlocal Schrödinger equation</p><span>$$-{\\cal{L}_K}u+V(x)u=f(x,u),\\ x\\in\\ \\mathbb{R}^N$$</span><p>are obtained, where <span>\\(-{\\cal{L}_K}\\)</span> is an integro-differential operator and <i>V</i> is coercive at infinity.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"26 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0512-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For any s ∈ (0, 1), let the nonlocal Sobolev space Xs(ℝN) be the linear space of Lebesgue measure functions from ℝN to ℝ such that any function u in Xs(ℝN) belongs to L2(ℝN) and the function
of Xs(ℝN) is embedded compactly into Lp(ℝN) for \(p\in[2,2_s^*)\), where \(2_s^*\) is the fractional Sobolev critical exponent. In terms of applications, the existence of a least energy sign-changing solution and infinitely many sign-changing solutions of the nonlocal Schrödinger equation
期刊介绍:
Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981.
The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.