Global unique solutions for the incompressible MHD equations with variable density and electrical conductivity

IF 1.2 4区 数学 Q1 MATHEMATICS
Xueli Ke
{"title":"Global unique solutions for the incompressible MHD equations with variable density and electrical conductivity","authors":"Xueli Ke","doi":"10.1007/s10473-024-0507-2","DOIUrl":null,"url":null,"abstract":"<p>We study the global unique solutions to the 2-D inhomogeneous incompressible MHD equations, with the initial data (<i>u</i><sub>0</sub>, <i>B</i><sub>0</sub>) being located in the critical Besov space <span>\\(\\dot{B}_{p,1}^{{-1}+{{2}\\over{p}}}(\\mathbb{R}^{2})\\)</span> (1 &lt; <i>p</i> &lt; 2) and the initial density <i>ρ</i><sub>0</sub> being close to a positive constant. By using weighted global estimates, maximal regularity estimates in the Lorentz space for the Stokes system, and the Lagrangian approach, we show that the 2-D MHD equations have a unique global solution.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"14 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0507-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the global unique solutions to the 2-D inhomogeneous incompressible MHD equations, with the initial data (u0, B0) being located in the critical Besov space \(\dot{B}_{p,1}^{{-1}+{{2}\over{p}}}(\mathbb{R}^{2})\) (1 < p < 2) and the initial density ρ0 being close to a positive constant. By using weighted global estimates, maximal regularity estimates in the Lorentz space for the Stokes system, and the Lagrangian approach, we show that the 2-D MHD equations have a unique global solution.

密度和导电率可变的不可压缩多流体力学方程的全局唯一解
我们研究了二维非均质不可压缩 MHD 方程的全局唯一解,初始数据 (u0, B0) 位于临界贝索夫空间 \(\dot{B}_{p,1}^{{-1}+{{2}\over{p}}}(\mathbb{R}^{2})\) (1 < p < 2),初始密度 ρ0 接近正常数。通过使用加权全局估计、斯托克斯系统洛伦兹空间中的最大正则估计以及拉格朗日方法,我们证明了二维 MHD 方程具有唯一的全局解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信