Lévy area analysis and parameter estimation for fOU processes via non-geometric rough path theory

IF 1.2 4区 数学 Q1 MATHEMATICS
Zhongmin Qian, Xingcheng Xu
{"title":"Lévy area analysis and parameter estimation for fOU processes via non-geometric rough path theory","authors":"Zhongmin Qian, Xingcheng Xu","doi":"10.1007/s10473-024-0501-8","DOIUrl":null,"url":null,"abstract":"<p>This paper addresses the estimation problem of an unknown drift parameter matrix for a fractional Ornstein-Uhlenbeck process in a multi-dimensional setting. To tackle this problem, we propose a novel approach based on rough path theory that allows us to construct pathwise rough path estimators from both continuous and discrete observations of a single path. Our approach is particularly suitable for high-frequency data. To formulate the parameter estimators, we introduce a theory of pathwise Itô integrals with respect to fractional Brownian motion. By establishing the regularity of fractional Ornstein-Uhlenbeck processes and analyzing the long-term behavior of the associated Lévy area processes, we demonstrate that our estimators are strongly consistent and pathwise stable. Our findings offer a new perspective on estimating the drift parameter matrix for fractional Ornstein-Uhlenbeck processes in multi-dimensional settings, and may have practical implications for fields including finance, economics, and engineering.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"168 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0501-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the estimation problem of an unknown drift parameter matrix for a fractional Ornstein-Uhlenbeck process in a multi-dimensional setting. To tackle this problem, we propose a novel approach based on rough path theory that allows us to construct pathwise rough path estimators from both continuous and discrete observations of a single path. Our approach is particularly suitable for high-frequency data. To formulate the parameter estimators, we introduce a theory of pathwise Itô integrals with respect to fractional Brownian motion. By establishing the regularity of fractional Ornstein-Uhlenbeck processes and analyzing the long-term behavior of the associated Lévy area processes, we demonstrate that our estimators are strongly consistent and pathwise stable. Our findings offer a new perspective on estimating the drift parameter matrix for fractional Ornstein-Uhlenbeck processes in multi-dimensional settings, and may have practical implications for fields including finance, economics, and engineering.

通过非几何粗糙路径理论对 fOU 过程进行莱维区分析和参数估计
本文探讨了在多维环境下分数奥恩斯坦-乌伦贝克过程的未知漂移参数矩阵的估计问题。为了解决这个问题,我们提出了一种基于粗糙路径理论的新方法,这种方法允许我们从单一路径的连续和离散观测中构建路径粗糙路径估计器。我们的方法尤其适用于高频数据。为了提出参数估计值,我们引入了关于分数布朗运动的路径伊托积分理论。通过建立分数 Ornstein-Uhlenbeck 过程的规则性并分析相关莱维区过程的长期行为,我们证明了我们的估计值具有很强的一致性和路径稳定性。我们的发现为在多维环境中估计分数奥恩斯坦-乌伦贝克过程的漂移参数矩阵提供了一个新视角,并可能对金融、经济和工程等领域产生实际影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信