Rigid Graph Products

Matthijs Borst, Martijn Caspers, Enli Chen
{"title":"Rigid Graph Products","authors":"Matthijs Borst, Martijn Caspers, Enli Chen","doi":"arxiv-2408.06171","DOIUrl":null,"url":null,"abstract":"We prove rigidity properties for von Neumann algebraic graph products. We\nintroduce the notion of rigid graphs and define a class of II$_1$-factors named\n$\\mathcal{C}_{\\rm Rigid}$. For von Neumann algebras in this class we show a\nunique rigid graph product decomposition. In particular, we obtain unique prime\nfactorization results and unique free product decomposition results for new\nclasses of von Neumann algebras. We also prove several technical results\nconcerning relative amenability and embeddings of (quasi)-normalizers in graph\nproducts. Furthermore, we give sufficient conditions for a graph product to be\nnuclear and characterize strong solidity, primeness and free-indecomposability\nfor graph products.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.06171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove rigidity properties for von Neumann algebraic graph products. We introduce the notion of rigid graphs and define a class of II$_1$-factors named $\mathcal{C}_{\rm Rigid}$. For von Neumann algebras in this class we show a unique rigid graph product decomposition. In particular, we obtain unique prime factorization results and unique free product decomposition results for new classes of von Neumann algebras. We also prove several technical results concerning relative amenability and embeddings of (quasi)-normalizers in graph products. Furthermore, we give sufficient conditions for a graph product to be nuclear and characterize strong solidity, primeness and free-indecomposability for graph products.
硬质图形产品
我们证明了 von Neumann 代数图积的刚性属性。我们引入了刚性图的概念,并定义了一类名为$\mathcal{C}_{rm Rigid}$的 II$_1$ 因子。对于这一类中的冯-诺依曼代数,我们展示了独特的刚性图积分解。特别是,我们得到了新类冯-诺依曼代数的唯一素因子化结果和唯一自由积分解结果。我们还证明了与图积中的(准)归一化子的相对适配性和嵌入有关的几个技术结果。此外,我们还给出了图积成核的充分条件,并描述了图积的强实体性、原始性和自由不可分性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信