The maximal coarse Baum-Connes conjecture for spaces that admit an A-by-FCE coarse fibration structure

Liang Guo, Qin Wang, Chen Zhang
{"title":"The maximal coarse Baum-Connes conjecture for spaces that admit an A-by-FCE coarse fibration structure","authors":"Liang Guo, Qin Wang, Chen Zhang","doi":"arxiv-2408.06660","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the concept of an A-by-FCE coarse fibration\nstructure for metric spaces, which serves as a generalization of the A-by-CE\nstructure for a sequence of group extensions proposed by Deng, Wang, and Yu. We\nshow that the maximal coarse Baum-Connes conjecture holds for metric spaces\nwith bounded geometry that admit an A-by-FCE coarse fibration structure. As an\napplication, the relative expanders constructed by Arzhantseva and Tessera, as\nwell as the box space derived from an extension of Haagerup groups by amenable\ngroups, are shown to exhibit the A-by-FCE coarse fibration structure.\nConsequently, their maximal coarse Baum-Connes conjectures are affirmed.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.06660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce the concept of an A-by-FCE coarse fibration structure for metric spaces, which serves as a generalization of the A-by-CE structure for a sequence of group extensions proposed by Deng, Wang, and Yu. We show that the maximal coarse Baum-Connes conjecture holds for metric spaces with bounded geometry that admit an A-by-FCE coarse fibration structure. As an application, the relative expanders constructed by Arzhantseva and Tessera, as well as the box space derived from an extension of Haagerup groups by amenable groups, are shown to exhibit the A-by-FCE coarse fibration structure. Consequently, their maximal coarse Baum-Connes conjectures are affirmed.
允许 A-by-FCE 粗纤维结构的空间的最大粗鲍姆-康内斯猜想
在本文中,我们介绍了公元空间的 A-by-FCE 粗纤维结构的概念,它是对邓、王和余提出的群扩展序列的 A-by-CE 结构的概括。我们发现,最大粗糙度鲍姆-康内斯猜想对于具有有界几何的公元空间是成立的,而这些公元空间都承认 A-by-FCE 粗糙度纤维结构。作为应用,Arzhantseva 和 Tessera 构建的相对扩展器,以及由可亲群对 Haagerup 群的扩展衍生出的箱形空间,都显示出 A-by-FCE 粗傅里叶结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信