Sofic actions on graphs

David Gao, Greg Patchell, Srivatsav Kunnawalkam Elayavalli
{"title":"Sofic actions on graphs","authors":"David Gao, Greg Patchell, Srivatsav Kunnawalkam Elayavalli","doi":"arxiv-2408.15470","DOIUrl":null,"url":null,"abstract":"We develop a theory of soficity for actions on graphs and obtain new\napplications to the study of sofic groups. We establish various examples,\nstability and permanence properties of sofic actions on graphs, in particular\nsoficity is preserved by taking several natural graph join operations. We prove\nthat an action of a group on its Cayley graph is sofic if and only if the group\nis sofic. We show that arbitrary actions of amenable groups on graphs are\nsofic. Using a graph theoretic result of E. Hrushovski, we also show that\narbitrary actions of free groups on graphs are sofic. Notably we show that\narbitrary actions of sofic groups on graphs, with amenable stabilizers, are\nsofic, settling completely an open problem from \\cite{gao2024soficity}. We also\nshow that soficity is preserved by taking limits under a natural\nGromov-Hausdorff topology, generalizing prior work of the first author\n\\cite{gao2024actionslerfgroupssets}. Our work sheds light on a family of groups\ncalled graph wreath products, simultaneously generalizing graph products and\ngeneralized wreath products. Extending various prior results in this direction\nincluding soficity of generalized wreath products \\cite{gao2024soficity}, B.\nHayes and A. Sale \\cite{HayesSale}, and soficity of graph products \\cite{CHR,\ncharlesworth2021matrix}, we show that graph wreath products are sofic if the\naction and acting groups are sofic. These results provide several new examples\nof sofic groups in a systematic manner.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a theory of soficity for actions on graphs and obtain new applications to the study of sofic groups. We establish various examples, stability and permanence properties of sofic actions on graphs, in particular soficity is preserved by taking several natural graph join operations. We prove that an action of a group on its Cayley graph is sofic if and only if the group is sofic. We show that arbitrary actions of amenable groups on graphs are sofic. Using a graph theoretic result of E. Hrushovski, we also show that arbitrary actions of free groups on graphs are sofic. Notably we show that arbitrary actions of sofic groups on graphs, with amenable stabilizers, are sofic, settling completely an open problem from \cite{gao2024soficity}. We also show that soficity is preserved by taking limits under a natural Gromov-Hausdorff topology, generalizing prior work of the first author \cite{gao2024actionslerfgroupssets}. Our work sheds light on a family of groups called graph wreath products, simultaneously generalizing graph products and generalized wreath products. Extending various prior results in this direction including soficity of generalized wreath products \cite{gao2024soficity}, B. Hayes and A. Sale \cite{HayesSale}, and soficity of graph products \cite{CHR, charlesworth2021matrix}, we show that graph wreath products are sofic if the action and acting groups are sofic. These results provide several new examples of sofic groups in a systematic manner.
图上的索非克作用
我们发展了图上作用的soficity 理论,并在sofic 群的研究中获得了新的应用。我们建立了图上的sofic作用的各种范例、稳定性和持久性,尤其是通过几种自然的图连接操作保留了sofic性。我们证明,当且仅当一个群是sofic 群时,该群在其 Cayley 图上的作用才是sofic 的。我们证明了可适群在图上的任意作用是可简化的。利用赫鲁晓夫斯基(E. Hrushovski)的一个图论结果,我们还证明了自由群在图上的任意作用是sofic的。值得注意的是,我们证明了图上的自由群的任意作用是sofic的,其稳定子是可变的,从而彻底解决了soficity的未决问题。我们还证明,通过在自然格罗莫夫-豪斯多夫拓扑学下取极限,可以保留soficity,这概括了第一作者之前的工作(cite{gao2024actionslerfgroupssets})。我们的工作揭示了一个称为图花环积的群族,同时推广了图积和广义花环积。在这个方向上,我们扩展了之前的各种结果,包括广义花环积的soficity (B.Hayes和A.Sale的soficity),以及图积的soficity (CHR,charlesworth2021matrix),我们证明了如果作用群和代理群是sofic的,那么图花环积就是sofic的。这些结果系统地提供了几个sofic群的新例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信