Homology and K-theory for self-similar actions of groups and groupoids

Alistair Miller, Benjamin Steinberg
{"title":"Homology and K-theory for self-similar actions of groups and groupoids","authors":"Alistair Miller, Benjamin Steinberg","doi":"arxiv-2409.02359","DOIUrl":null,"url":null,"abstract":"Nekrashevych associated to each self-similar group action an ample groupoid\nand a C*-algebra. We provide exact sequences to compute the homology of the\ngroupoid and the K-theory of the C*-algebra in terms of the homology of the\ngroup and K-theory of the group C*-algebra via the transfer map and the virtual\nendomorphism. Complete computations are then performed for the Grigorchuk\ngroup, the Grigorchuk--Erschler group, Gupta--Sidki groups and many others.\nResults are proved more generally for self-similar groupoids. As a consequence\nof our results and recent results of Xin Li, we are able to show that R\\\"over's\nsimple group containing the Grigorchuk group is rationally acyclic but has\nnontrivial Schur multiplier. We prove many more R\\\"over--Nekrashevych groups of\nself-similar groups are rationally acyclic.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nekrashevych associated to each self-similar group action an ample groupoid and a C*-algebra. We provide exact sequences to compute the homology of the groupoid and the K-theory of the C*-algebra in terms of the homology of the group and K-theory of the group C*-algebra via the transfer map and the virtual endomorphism. Complete computations are then performed for the Grigorchuk group, the Grigorchuk--Erschler group, Gupta--Sidki groups and many others. Results are proved more generally for self-similar groupoids. As a consequence of our results and recent results of Xin Li, we are able to show that R\"over's simple group containing the Grigorchuk group is rationally acyclic but has nontrivial Schur multiplier. We prove many more R\"over--Nekrashevych groups of self-similar groups are rationally acyclic.
群和群实体自相似作用的同调和 K 理论
内克拉舍维奇(Nekrashevych)为每个自相似群作用关联了一个充裕群和一个 C* 代数。我们提供了精确的序列,通过转移映射和虚内变,以群的同源性和群 C* 代数的 K 理论来计算群的同源性和 C* 代数的 K 理论。然后对格里高丘克群、格里高丘克--埃尔斯克勒群、古普塔--西斯基群等进行了完整的计算。由于我们的结果和李昕最近的结果,我们能够证明包含格里高丘克群的R/"over'simple群是有理无循环的,但没有琐碎的舒尔乘数。我们还证明了更多自相似群的R(over--Nekrashevych)群是合理无循环的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信