Measures of noncompactness in Hilbert $C^*$-modules

Dragoljub J. Kečkić, Zlatko Lazović
{"title":"Measures of noncompactness in Hilbert $C^*$-modules","authors":"Dragoljub J. Kečkić, Zlatko Lazović","doi":"arxiv-2409.02514","DOIUrl":null,"url":null,"abstract":"Consider a countably generated Hilbert $C^*$-module $\\mathcal M$ over a\n$C^*$-algebra $\\mathcal A$. There is a measure of noncompactness $\\lambda$\ndefined, roughly as the distance from finitely generated projective submodules,\nwhich is independent of any topology. We compare $\\lambda$ to the Hausdorff\nmeasure of noncompactness with respect to the family of seminorms that induce a\ntopology recently iontroduced by Troitsky, denoted by $\\chi^*$. We obtain\n$\\lambda\\equiv\\chi^*$. Related inequalities involving other known measures of\nnoncompactness, e.g. Kuratowski and Istr\\u{a}\\c{t}escu are laso obtained as\nwell as some related results on adjontable operators.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Consider a countably generated Hilbert $C^*$-module $\mathcal M$ over a $C^*$-algebra $\mathcal A$. There is a measure of noncompactness $\lambda$ defined, roughly as the distance from finitely generated projective submodules, which is independent of any topology. We compare $\lambda$ to the Hausdorff measure of noncompactness with respect to the family of seminorms that induce a topology recently iontroduced by Troitsky, denoted by $\chi^*$. We obtain $\lambda\equiv\chi^*$. Related inequalities involving other known measures of noncompactness, e.g. Kuratowski and Istr\u{a}\c{t}escu are laso obtained as well as some related results on adjontable operators.
希尔伯特 $C^*$ 模块中的非紧密性度量
考虑一个在$C^*$-代数$/mathcal A$上的可数生成的希尔伯特$C^*$-模块$/mathcal M$。有一个非紧凑性的度量 $\lambda$ 定义为与有限生成的投影子模块的距离,它与任何拓扑无关。我们将$\lambda$与关于特罗伊茨基最近提出的诱导拓扑学的半模子族的非紧凑性的豪斯多夫度量进行比较,用$\chi^*$表示。我们得到$\lambda\equiv\chi^*$。我们还得到了涉及其他已知非紧凑性度量的相关不等式,如库拉托夫斯基(Kuratowski)和伊斯特拉图斯库(Istr\{a}\c{t}escu)的不等式,以及一些关于可邻接算子的相关结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信