A generalization of K-theory to operator systems

Walter D. van Suijlekom
{"title":"A generalization of K-theory to operator systems","authors":"Walter D. van Suijlekom","doi":"arxiv-2409.02773","DOIUrl":null,"url":null,"abstract":"We propose a generalization of K-theory to operator systems. Motivated by\nspectral truncations of noncommutative spaces described by $C^*$-algebras and\ninspired by the realization of the K-theory of a $C^*$-algebra as the Witt\ngroup of hermitian forms, we introduce new operator system invariants indexed\nby the corresponding matrix size. A direct system is constructed whose direct\nlimit possesses a semigroup structure, and we define the $K_0$-group as the\ncorresponding Grothendieck group. This is an invariant of unital operator\nsystems, and, more generally, an invariant up to Morita equivalence of operator\nsystems. For $C^*$-algebras it reduces to the usual definition. We illustrate\nour invariant by means of the spectral localizer.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a generalization of K-theory to operator systems. Motivated by spectral truncations of noncommutative spaces described by $C^*$-algebras and inspired by the realization of the K-theory of a $C^*$-algebra as the Witt group of hermitian forms, we introduce new operator system invariants indexed by the corresponding matrix size. A direct system is constructed whose direct limit possesses a semigroup structure, and we define the $K_0$-group as the corresponding Grothendieck group. This is an invariant of unital operator systems, and, more generally, an invariant up to Morita equivalence of operator systems. For $C^*$-algebras it reduces to the usual definition. We illustrate our invariant by means of the spectral localizer.
K 理论对算子系统的推广
我们提议将 K 理论推广到算子系统。受$C^*$-代数描述的非交换空间的谱截断的启发,以及将$C^*$-代数的K理论实现为赫米特形式的维特群的启发,我们引入了以相应矩阵大小为索引的新的算子系统不变式。我们构建了一个直接系统,它的直接极限具有半群结构,我们将 $K_0$ 群定义为相应的格罗内狄克群。这是单元算子系统的不变式,更一般地说,是算子系统的莫里塔等价不变式。对于$C^*$数组,它可以简化为通常的定义。我们通过谱定位器来说明我们的不变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信