Limit of iteration of the induced Aluthge transformations of centered operators

Hiroyuki Osaka, Takeaki Yamazaki
{"title":"Limit of iteration of the induced Aluthge transformations of centered operators","authors":"Hiroyuki Osaka, Takeaki Yamazaki","doi":"arxiv-2409.03338","DOIUrl":null,"url":null,"abstract":"Aluthge transform is a well-known mapping defined on bounded linear\noperators. Especially, the convergence property of its iteration has been\nstudied by many authors. In this paper, we discuss the problem for the induced\nAluthge transforms which is a generalization of the Aluthge transform defined\nin 2021. We give the polar decomposition of the induced Aluthge transformations\nof centered operators and show its iteration converges to a normal operator. In\nparticular, if $T$ is an invertible centered matrix, then iteration of any\ninduced Aluthge transformations converges. Using the canonical standard form of\nmatrix algebras we show that the iteration of any induced Aluthge\ntransformations with respect to the weighted arithmetic mean and the power mean\nconverge. Those observation are extended to the $C^*$-algebra of compact\noperators on an infinite dimensional Hilbert space, and as an application we\nshow the stability of $\\mathcal{AN}$ and $\\mathcal{AM}$ properties under the\niteration of the induced Aluthge transformations. We also provide concrete\nforms of their limit points for centered matrices and several examples.\nMoreover, we discuss the limit point of the induced Aluthge transformation with\nrespect to the power mean in the injective $II_1$-factor $\\mathcal{M}$ and\ndetermine the form of its limit for some centered operators in $\\mathcal{M}$.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aluthge transform is a well-known mapping defined on bounded linear operators. Especially, the convergence property of its iteration has been studied by many authors. In this paper, we discuss the problem for the induced Aluthge transforms which is a generalization of the Aluthge transform defined in 2021. We give the polar decomposition of the induced Aluthge transformations of centered operators and show its iteration converges to a normal operator. In particular, if $T$ is an invertible centered matrix, then iteration of any induced Aluthge transformations converges. Using the canonical standard form of matrix algebras we show that the iteration of any induced Aluthge transformations with respect to the weighted arithmetic mean and the power mean converge. Those observation are extended to the $C^*$-algebra of compact operators on an infinite dimensional Hilbert space, and as an application we show the stability of $\mathcal{AN}$ and $\mathcal{AM}$ properties under the iteration of the induced Aluthge transformations. We also provide concrete forms of their limit points for centered matrices and several examples. Moreover, we discuss the limit point of the induced Aluthge transformation with respect to the power mean in the injective $II_1$-factor $\mathcal{M}$ and determine the form of its limit for some centered operators in $\mathcal{M}$.
居中算子的诱导阿卢斯格变换的迭代极限
Aluthge 变换是定义在有界线性运算符上的著名映射。特别是其迭代的收敛特性已被许多学者研究过。本文讨论了诱导 Aluthge 变换的问题,诱导 Aluthge 变换是 2021 年定义的 Aluthge 变换的广义化。我们给出了居中算子的诱导阿卢斯格变换的极性分解,并证明其迭代收敛于正常算子。特别是,如果 $T$ 是一个可逆的居中矩阵,那么任何诱导的 Aluthge 变换的迭代都会收敛。利用矩阵代数的典型标准形式,我们证明了任何诱导的阿卢特变换的迭代在加权算术平均数和幂平均数方面都会收敛。这些观察结果被推广到无限维希尔伯特空间上的$C^*$-紧凑运算符代数,并作为应用展示了$\mathcal{AN}$和$\mathcal{AM}$性质在迭代诱导阿卢特变换下的稳定性。此外,我们还讨论了注入式 $II_1$ 因子 $\mathcal{M}$ 中相对于幂均值的诱导阿卢斯格变换的极限点,并确定了 $\mathcal{M}$ 中一些居中算子的极限形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信