Preservers of Operator Commutativity

Gerardo M. Escolano, Antonio M. Peralta, Armando R. Villena
{"title":"Preservers of Operator Commutativity","authors":"Gerardo M. Escolano, Antonio M. Peralta, Armando R. Villena","doi":"arxiv-2409.06799","DOIUrl":null,"url":null,"abstract":"Let $\\mathfrak{M}$ and $\\mathfrak{J}$ be JBW$^*$-algebras admitting no\ncentral summands of type $I_1$ and $I_2,$ and let $\\Phi: \\mathfrak{M}\n\\rightarrow \\mathfrak{J}$ be a linear bijection preserving operator\ncommutativity in both directions, that is, $$[x,\\mathfrak{M},y] = 0\n\\Leftrightarrow [\\Phi(x),\\mathfrak{J},\\Phi(y)] = 0,$$ for all $x,y\\in\n\\mathfrak{M}$, where the associator of three elements $a,b,c$ in $\\mathfrak{M}$\nis defined by $[a,b,c]:=(a\\circ b)\\circ c - (c\\circ b)\\circ a$. We prove that\nunder these conditions there exist a unique invertible central element $z_0$ in\n$\\mathfrak{J}$, a unique Jordan isomorphism $J: \\mathfrak{M} \\rightarrow\n\\mathfrak{J}$, and a unique linear mapping $\\beta$ from $\\mathfrak{M}$ to the\ncentre of $\\mathfrak{J}$ satisfying $$ \\Phi(x) = z_0 \\circ J(x) + \\beta(x), $$\nfor all $x\\in \\mathfrak{M}.$ Furthermore, if $\\Phi$ is a symmetric mapping\n(i.e., $\\Phi (x^*) = \\Phi (x)^*$ for all $x\\in \\mathfrak{M}$), the element\n$z_0$ is self-adjoint, $J$ is a Jordan $^*$-isomorphism, and $\\beta$ is a\nsymmetric mapping too. In case that $\\mathfrak{J}$ is a JBW$^*$-algebra admitting no central\nsummands of type $I_1$, we also address the problem of describing the form of\nall symmetric bilinear mappings $B : \\mathfrak{J}\\times \\mathfrak{J}\\to\n\\mathfrak{J}$ whose trace is associating (i.e., $[B(a,a),b,a] = 0,$ for all $a,\nb \\in \\mathfrak{J})$ providing a complete solution to it. We also determine the\nform of all associating linear maps on $\\mathfrak{J}$.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\mathfrak{M}$ and $\mathfrak{J}$ be JBW$^*$-algebras admitting no central summands of type $I_1$ and $I_2,$ and let $\Phi: \mathfrak{M} \rightarrow \mathfrak{J}$ be a linear bijection preserving operator commutativity in both directions, that is, $$[x,\mathfrak{M},y] = 0 \Leftrightarrow [\Phi(x),\mathfrak{J},\Phi(y)] = 0,$$ for all $x,y\in \mathfrak{M}$, where the associator of three elements $a,b,c$ in $\mathfrak{M}$ is defined by $[a,b,c]:=(a\circ b)\circ c - (c\circ b)\circ a$. We prove that under these conditions there exist a unique invertible central element $z_0$ in $\mathfrak{J}$, a unique Jordan isomorphism $J: \mathfrak{M} \rightarrow \mathfrak{J}$, and a unique linear mapping $\beta$ from $\mathfrak{M}$ to the centre of $\mathfrak{J}$ satisfying $$ \Phi(x) = z_0 \circ J(x) + \beta(x), $$ for all $x\in \mathfrak{M}.$ Furthermore, if $\Phi$ is a symmetric mapping (i.e., $\Phi (x^*) = \Phi (x)^*$ for all $x\in \mathfrak{M}$), the element $z_0$ is self-adjoint, $J$ is a Jordan $^*$-isomorphism, and $\beta$ is a symmetric mapping too. In case that $\mathfrak{J}$ is a JBW$^*$-algebra admitting no central summands of type $I_1$, we also address the problem of describing the form of all symmetric bilinear mappings $B : \mathfrak{J}\times \mathfrak{J}\to \mathfrak{J}$ whose trace is associating (i.e., $[B(a,a),b,a] = 0,$ for all $a, b \in \mathfrak{J})$ providing a complete solution to it. We also determine the form of all associating linear maps on $\mathfrak{J}$.
算子交换性的保全器
让 $\mathfrak{M}$ 和 $\mathfrak{J}$ 是容许 $I_1$ 和 $I_2,$ 类型的中心和的 JBW$^*$ 对象,并让 $\Phi:让 $Phi: \mathfrak{M}\rightarrow \mathfrak{J}$ 是在两个方向上保留算子交换性的线性双投影,即 $$[x,\mathfrak{M},y] = 0\Leftrightarrow [\Phi(x)、\对于所有 $x,y,$,其中 $mathfrak{M}$ 中三个元素 $a,b,c$ 的联立方程定义为 $[a,b,c]:=(a/circ b)\circ c - (c/circ b)\circ a$.我们证明,在这些条件下,$mathfrak{J}$ 中存在一个唯一的可反中心元 $z_0$,一个唯一的约旦同构 $J: \mathfrak{M}.\和一个从 $\mathfrak{M}$ 到 $\mathfrak{J}$ 中心的唯一线性映射 $\beta$ 满足 $$ \Phi(x) = z_0 \circ J(x) + \beta(x), $$for all $x\in \mathfrak{M}、$Phi (x^*) = \Phi (x)^*$ for all $x\in \mathfrak{M}$),元素$z_0$是自交的,$J$是一个乔丹$^*$-同构,并且$\beta$也是不对称映射。如果 $\mathfrak{J}$ 是一个不允许 $I_1$ 类型中心和的 JBW$^*$-algebra,我们还要解决描述所有对称双线性映射 $B : \mathfrak{J}\times \mathfrak{J}\to\mathfrak{J}$ 的形式的问题,这些映射的迹是关联的(即:$[B(a,a),b,a] = 0,$ 对于 \mathfrak{J} 中的所有 $a,b)$ 提供了一个完整的解。我们还确定了 $\mathfrak{J}$ 上所有关联线性映射的形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信