{"title":"Functional identities involving inverses on Banach algebras","authors":"Kaijia Luo, Jiankui Li","doi":"arxiv-2409.04192","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to characterize several classes of functional\nidentities involving inverses with related mappings from a unital Banach\nalgebra $\\mathcal{A}$ over the complex field into a unital\n$\\mathcal{A}$-bimodule $\\mathcal{M}$. Let $N$ be a fixed invertible element in\n$\\mathcal{A}$, $M$ be a fixed element in $\\mathcal{M}$, and $n$ be a positive\ninteger. We investigate the forms of additive mappings $f$, $g$ from\n$\\mathcal{A}$ into $\\mathcal{M}$ satisfying one of the following identities:\n\\begin{equation*} \\begin{aligned} &f(A)A- Ag(A) = 0\\\\ &f(A)+ g(B)\\star A= M\\\\\n&f(A)+A^{n}g(A^{-1})=0\\\\ &f(A)+A^{n}g(B)=M \\end{aligned} \\qquad \\begin{aligned}\n&\\text{for each invertible element}~A\\in\\mathcal{A}; \\\\ &\\text{whenever}~\nA,B\\in\\mathcal{A}~\\text{with}~AB=N;\\\\ &\\text{for each invertible\nelement}~A\\in\\mathcal{A}; \\\\ &\\text{whenever}~\nA,B\\in\\mathcal{A}~\\text{with}~AB=N, \\end{aligned} \\end{equation*} where $\\star$\nis either the Jordan product $A\\star B = AB+BA$ or the Lie product $A\\star B =\nAB-BA$.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this paper is to characterize several classes of functional
identities involving inverses with related mappings from a unital Banach
algebra $\mathcal{A}$ over the complex field into a unital
$\mathcal{A}$-bimodule $\mathcal{M}$. Let $N$ be a fixed invertible element in
$\mathcal{A}$, $M$ be a fixed element in $\mathcal{M}$, and $n$ be a positive
integer. We investigate the forms of additive mappings $f$, $g$ from
$\mathcal{A}$ into $\mathcal{M}$ satisfying one of the following identities:
\begin{equation*} \begin{aligned} &f(A)A- Ag(A) = 0\\ &f(A)+ g(B)\star A= M\\
&f(A)+A^{n}g(A^{-1})=0\\ &f(A)+A^{n}g(B)=M \end{aligned} \qquad \begin{aligned}
&\text{for each invertible element}~A\in\mathcal{A}; \\ &\text{whenever}~
A,B\in\mathcal{A}~\text{with}~AB=N;\\ &\text{for each invertible
element}~A\in\mathcal{A}; \\ &\text{whenever}~
A,B\in\mathcal{A}~\text{with}~AB=N, \end{aligned} \end{equation*} where $\star$
is either the Jordan product $A\star B = AB+BA$ or the Lie product $A\star B =
AB-BA$.