Functional identities involving inverses on Banach algebras

Kaijia Luo, Jiankui Li
{"title":"Functional identities involving inverses on Banach algebras","authors":"Kaijia Luo, Jiankui Li","doi":"arxiv-2409.04192","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to characterize several classes of functional\nidentities involving inverses with related mappings from a unital Banach\nalgebra $\\mathcal{A}$ over the complex field into a unital\n$\\mathcal{A}$-bimodule $\\mathcal{M}$. Let $N$ be a fixed invertible element in\n$\\mathcal{A}$, $M$ be a fixed element in $\\mathcal{M}$, and $n$ be a positive\ninteger. We investigate the forms of additive mappings $f$, $g$ from\n$\\mathcal{A}$ into $\\mathcal{M}$ satisfying one of the following identities:\n\\begin{equation*} \\begin{aligned} &f(A)A- Ag(A) = 0\\\\ &f(A)+ g(B)\\star A= M\\\\\n&f(A)+A^{n}g(A^{-1})=0\\\\ &f(A)+A^{n}g(B)=M \\end{aligned} \\qquad \\begin{aligned}\n&\\text{for each invertible element}~A\\in\\mathcal{A}; \\\\ &\\text{whenever}~\nA,B\\in\\mathcal{A}~\\text{with}~AB=N;\\\\ &\\text{for each invertible\nelement}~A\\in\\mathcal{A}; \\\\ &\\text{whenever}~\nA,B\\in\\mathcal{A}~\\text{with}~AB=N, \\end{aligned} \\end{equation*} where $\\star$\nis either the Jordan product $A\\star B = AB+BA$ or the Lie product $A\\star B =\nAB-BA$.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this paper is to characterize several classes of functional identities involving inverses with related mappings from a unital Banach algebra $\mathcal{A}$ over the complex field into a unital $\mathcal{A}$-bimodule $\mathcal{M}$. Let $N$ be a fixed invertible element in $\mathcal{A}$, $M$ be a fixed element in $\mathcal{M}$, and $n$ be a positive integer. We investigate the forms of additive mappings $f$, $g$ from $\mathcal{A}$ into $\mathcal{M}$ satisfying one of the following identities: \begin{equation*} \begin{aligned} &f(A)A- Ag(A) = 0\\ &f(A)+ g(B)\star A= M\\ &f(A)+A^{n}g(A^{-1})=0\\ &f(A)+A^{n}g(B)=M \end{aligned} \qquad \begin{aligned} &\text{for each invertible element}~A\in\mathcal{A}; \\ &\text{whenever}~ A,B\in\mathcal{A}~\text{with}~AB=N;\\ &\text{for each invertible element}~A\in\mathcal{A}; \\ &\text{whenever}~ A,B\in\mathcal{A}~\text{with}~AB=N, \end{aligned} \end{equation*} where $\star$ is either the Jordan product $A\star B = AB+BA$ or the Lie product $A\star B = AB-BA$.
涉及巴拿赫数列上倒数的函数等式
本文的目的是描述几类涉及从复数域上的单素巴拿恰代数 $\mathcal{A}$ 到单素$\mathcal{A}$-二元模块 $\mathcal{M}$ 的相关映射的反转的函数特征。让 $N$ 是 $\mathcal{A}$ 中的一个固定可逆元素,$M$ 是 $\mathcal{M}$ 中的一个固定元素,而 $n$ 是一个正整数。我们研究从$\mathcal{A}$到$\mathcal{M}$的加法映射$f$, $g$满足以下其中一个同式的形式:\begin{equation*}.\&f(A)A- Ag(A) = 0\ &f(A)+ g(B)/star A= M\&f(A)+A^{n}g(A^{-1})=0\ &f(A)+A^{n}g(B)=M \end{aligned}\對於每個可逆元素}~A(in/mathcal{A}); (&text{whenever}~A,B(in/mathcal{A})~(text{with}~AB=N;\\ 對於每個可逆元素}~A(in/mathcal{A}); (text{whenever}~A,B(in/mathcal{A})~text{with}~AB=N, (end{aligned})。\end{equation*} 其中$star$是乔丹积$A/star B = AB+BA$ 或烈积$A/star B =AB-BA$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信