Classical harmonic analysis viewed through the prism of noncommutative geometry

Cédric Arhancet
{"title":"Classical harmonic analysis viewed through the prism of noncommutative geometry","authors":"Cédric Arhancet","doi":"arxiv-2409.07750","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to bridge noncommutative geometry with classical\nharmonic analysis on Banach spaces, focusing primarily on both classical and\nnoncommutative $\\mathrm{L}^p$ spaces. Introducing a notion of Banach Fredholm\nmodule, we define new abelian groups, $\\mathrm{K}^{0}(\\mathcal{A},\\mathscr{B})$\nand $\\mathrm{K}^{1}(\\mathcal{A},\\mathscr{B})$, of $\\mathrm{K}$-homology\nassociated with an algebra $\\mathcal{A}$ and a suitable class $\\mathscr{B}$ of\nBanach spaces, such as the class of $\\mathrm{L}^p$-spaces. We establish index\npairings of these groups with the $\\mathrm{K}$-theory groups of the algebra\n$\\mathcal{A}$. Subsequently, by considering (noncommutative) Hardy spaces, we\nuncover the natural emergence of Hilbert transforms, leading to Banach Fredholm\nmodules and culminating in index theorems. Moreover, by associating each\nreasonable sub-Markovian semigroup with a <<Banach noncommutative manifold>>,\nwe explain how this leads to (possibly kernel-degenerate) Banach Fredholm\nmodules, thereby revealing the role of vectorial Riesz transforms in this\ncontext. Overall, our approach significantly integrates the analysis of\noperators on $\\mathrm{L}^p$-spaces into the expansive framework of\nnoncommutative geometry, offering new perspectives.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to bridge noncommutative geometry with classical harmonic analysis on Banach spaces, focusing primarily on both classical and noncommutative $\mathrm{L}^p$ spaces. Introducing a notion of Banach Fredholm module, we define new abelian groups, $\mathrm{K}^{0}(\mathcal{A},\mathscr{B})$ and $\mathrm{K}^{1}(\mathcal{A},\mathscr{B})$, of $\mathrm{K}$-homology associated with an algebra $\mathcal{A}$ and a suitable class $\mathscr{B}$ of Banach spaces, such as the class of $\mathrm{L}^p$-spaces. We establish index pairings of these groups with the $\mathrm{K}$-theory groups of the algebra $\mathcal{A}$. Subsequently, by considering (noncommutative) Hardy spaces, we uncover the natural emergence of Hilbert transforms, leading to Banach Fredholm modules and culminating in index theorems. Moreover, by associating each reasonable sub-Markovian semigroup with a <>, we explain how this leads to (possibly kernel-degenerate) Banach Fredholm modules, thereby revealing the role of vectorial Riesz transforms in this context. Overall, our approach significantly integrates the analysis of operators on $\mathrm{L}^p$-spaces into the expansive framework of noncommutative geometry, offering new perspectives.
从非交换几何棱镜看经典谐波分析
本文的目的是在巴拿赫空间的非交换几何与经典和声分析之间架起一座桥梁,主要关注经典和非交换 $\mathrm{L}^p$ 空间。我们引入了巴拿赫弗雷德模块的概念,定义了新的无性群,即 $\mathrm{K}^{0}(\mathcal{A},\mathscr{B})$ 和 $\mathrm{K}^{1}(\mathcal{A},\mathscr{B})$ 、与代数 $\mathcal{A}$ 和巴纳赫空间的合适类别 $\mathscr{B}$ 相关的 $\mathrm{K}$ 浩态,比如 $\mathrm{L}^p$ 空间的类别。我们建立了这些群与代数$\mathcal{A}$ 的 $\mathrm{K}$ 理论群的索引配对。随后,通过考虑(非交换)哈代空间,我们揭示了希尔伯特变换的自然出现,从而引出巴拿赫弗雷德霍尔模块,并最终得出索引定理。此外,通过将每个合理的子马尔可夫半群与一个 > 关联起来,我们解释了这是如何导致(可能是核退化的)巴拿赫弗里德霍尔模块的,从而揭示了向量里兹变换在此背景下的作用。总之,我们的方法将$\mathrm{L}^p$空间上的运算符分析极大地整合到了非交换几何的广阔框架中,提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信