Modal parameter extraction from improved principal component analysis and structural state identification

IF 2.1 4区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY
Xueyan Li, E. Liu, Lixin Wang, SJ Lin, W Zhao
{"title":"Modal parameter extraction from improved principal component analysis and structural state identification","authors":"Xueyan Li, E. Liu, Lixin Wang, SJ Lin, W Zhao","doi":"10.1177/13694332241269246","DOIUrl":null,"url":null,"abstract":"With the vigorous development of building structures and important infrastructure, structural health monitoring is necessary. Because there is no need to establish structural finite element modeling and train for various structural conditions, the data-driven and unsupervised learning method is very popular. Principal component analysis is a powerful signal analysis tool, but its lack of physical significance and the loss of sensitive information have hindered its wider application. Therefore, the improved principal component analysis based narrowband filtering is proposed to extract mode shapes and construct the structural state vectors, so that the damage index is more sensitive to damage and robust to the environmental factors. After the vibration response of the long-term monitoring is analyzed by the principal component analysis, the Gaussian mixture model clustering analysis is used to classify the structural states. Finally, the proposed method is applied to the analysis of the simulation data of ASCE Benchmark structure and the measured data of steel beams in the lab. The results show that the structural state vector is sensitive to structural damage. The clustering analysis of Gaussian mixture model can distinguish the structural states. The effectiveness of the proposed method is verified.","PeriodicalId":50849,"journal":{"name":"Advances in Structural Engineering","volume":"3 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Structural Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13694332241269246","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

With the vigorous development of building structures and important infrastructure, structural health monitoring is necessary. Because there is no need to establish structural finite element modeling and train for various structural conditions, the data-driven and unsupervised learning method is very popular. Principal component analysis is a powerful signal analysis tool, but its lack of physical significance and the loss of sensitive information have hindered its wider application. Therefore, the improved principal component analysis based narrowband filtering is proposed to extract mode shapes and construct the structural state vectors, so that the damage index is more sensitive to damage and robust to the environmental factors. After the vibration response of the long-term monitoring is analyzed by the principal component analysis, the Gaussian mixture model clustering analysis is used to classify the structural states. Finally, the proposed method is applied to the analysis of the simulation data of ASCE Benchmark structure and the measured data of steel beams in the lab. The results show that the structural state vector is sensitive to structural damage. The clustering analysis of Gaussian mixture model can distinguish the structural states. The effectiveness of the proposed method is verified.
从改进的主成分分析和结构状态识别中提取模态参数
随着建筑结构和重要基础设施的蓬勃发展,结构健康监测十分必要。由于无需建立结构有限元模型和针对各种结构条件进行训练,数据驱动和无监督学习方法非常受欢迎。主成分分析是一种功能强大的信号分析工具,但其缺乏物理意义和丢失敏感信息的缺点阻碍了它的广泛应用。因此,提出了基于窄带滤波的改进型主成分分析法,提取模态振型,构建结构状态向量,使损伤指数对损伤更加敏感,对环境因素更加稳健。通过主成分分析对长期监测的振动响应进行分析后,利用高斯混合模型聚类分析对结构状态进行分类。最后,将所提出的方法应用于分析 ASCE 基准结构的模拟数据和实验室钢梁的测量数据。结果表明,结构状态向量对结构损伤很敏感。高斯混合模型的聚类分析可以区分结构状态。验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Structural Engineering
Advances in Structural Engineering 工程技术-工程:土木
CiteScore
5.00
自引率
11.50%
发文量
230
审稿时长
2.3 months
期刊介绍: Advances in Structural Engineering was established in 1997 and has become one of the major peer-reviewed journals in the field of structural engineering. To better fulfil the mission of the journal, we have recently decided to launch two new features for the journal: (a) invited review papers providing an in-depth exposition of a topic of significant current interest; (b) short papers reporting truly new technologies in structural engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信