Abbas Rezaeian, Mohammad Sajjad Salehi, Venkatesh Kodur
{"title":"Performance of steel beams with endplate connections exposed to fire","authors":"Abbas Rezaeian, Mohammad Sajjad Salehi, Venkatesh Kodur","doi":"10.1177/13694332241281524","DOIUrl":null,"url":null,"abstract":"This paper presents results from an experimental study on the fire behavior of endplate joints and the connected steel beams in a moment resisting frame (MRF). Utilizing the subframe assemblage, full-scale steel beams with various endplate connections were tested according to the ISO834 standard fire exposure. The thermal and structural responses of the beam and its endplate joints to the column, together with failure modes were monitored throughout the fire test. The effect of key factors such as endplate dimensions, bolt size and grade, and the presence of stiffeners were investigated. The results of the fire tests show that the specimen experiences flexural failure in 746–773°C temperature range, through mid-span deflection exceeding the deflection limit as per British standard 476. When the beam experienced a deflection greater than span/20, the endplate joints got fractured at about 40 min in to fire at temperatures higher than 815°C. The results also indicated that the endplate bending and the tensile fracture of the bolts control the failure of the endplate joint under fire exposure. The endplate connection details have a notable influence on the beam’s behavior under fire conditions, and the use of grade 10.9 bolts and wider endplates in the connection can improve the fire resistance of MRFs.","PeriodicalId":50849,"journal":{"name":"Advances in Structural Engineering","volume":"64 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Structural Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13694332241281524","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents results from an experimental study on the fire behavior of endplate joints and the connected steel beams in a moment resisting frame (MRF). Utilizing the subframe assemblage, full-scale steel beams with various endplate connections were tested according to the ISO834 standard fire exposure. The thermal and structural responses of the beam and its endplate joints to the column, together with failure modes were monitored throughout the fire test. The effect of key factors such as endplate dimensions, bolt size and grade, and the presence of stiffeners were investigated. The results of the fire tests show that the specimen experiences flexural failure in 746–773°C temperature range, through mid-span deflection exceeding the deflection limit as per British standard 476. When the beam experienced a deflection greater than span/20, the endplate joints got fractured at about 40 min in to fire at temperatures higher than 815°C. The results also indicated that the endplate bending and the tensile fracture of the bolts control the failure of the endplate joint under fire exposure. The endplate connection details have a notable influence on the beam’s behavior under fire conditions, and the use of grade 10.9 bolts and wider endplates in the connection can improve the fire resistance of MRFs.
期刊介绍:
Advances in Structural Engineering was established in 1997 and has become one of the major peer-reviewed journals in the field of structural engineering. To better fulfil the mission of the journal, we have recently decided to launch two new features for the journal: (a) invited review papers providing an in-depth exposition of a topic of significant current interest; (b) short papers reporting truly new technologies in structural engineering.