Boundary Stabilization of the Korteweg-de Vries-Burgers Equation with an Infinite Memory-Type Control and Applications: A Qualitative and Numerical Analysis
{"title":"Boundary Stabilization of the Korteweg-de Vries-Burgers Equation with an Infinite Memory-Type Control and Applications: A Qualitative and Numerical Analysis","authors":"Boumediène Chentouf, Aissa Guesmia, Mauricio Sepúlveda Cortés, Rodrigo Véjar Asem","doi":"10.1007/s00245-024-10172-z","DOIUrl":null,"url":null,"abstract":"<div><p>This article is intended to present a qualitative and numerical analysis of well-posedness and boundary stabilization problems of the well-known Korteweg-de Vries-Burgers equation. Assuming that the boundary control is of memory type, the history approach is adopted in order to deal with the memory term. Under sufficient conditions on the physical parameters of the system and the memory kernel of the control, the system is shown to be well-posed by combining the semigroups approach of linear operators and the fixed point theory. Then, energy decay estimates are provided by applying the multiplier method. An application to the Kuramoto-Sivashinsky equation will be also given. Lastly, we present a numerical analysis based on a finite difference method and provide numerical examples illustrating our theoretical results.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"90 2","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-024-10172-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This article is intended to present a qualitative and numerical analysis of well-posedness and boundary stabilization problems of the well-known Korteweg-de Vries-Burgers equation. Assuming that the boundary control is of memory type, the history approach is adopted in order to deal with the memory term. Under sufficient conditions on the physical parameters of the system and the memory kernel of the control, the system is shown to be well-posed by combining the semigroups approach of linear operators and the fixed point theory. Then, energy decay estimates are provided by applying the multiplier method. An application to the Kuramoto-Sivashinsky equation will be also given. Lastly, we present a numerical analysis based on a finite difference method and provide numerical examples illustrating our theoretical results.
期刊介绍:
The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.