{"title":"Uncertainty quantification and confidence intervals for naive rare-event estimators","authors":"Yuanlu Bai, Henry Lam","doi":"10.1017/jpr.2024.43","DOIUrl":null,"url":null,"abstract":"We consider the estimation of rare-event probabilities using sample proportions output by naive Monte Carlo or collected data. Unlike using variance reduction techniques, this naive estimator does not have an a priori relative efficiency guarantee. On the other hand, due to the recent surge of sophisticated rare-event problems arising in safety evaluations of intelligent systems, efficiency-guaranteed variance reduction may face implementation challenges which, coupled with the availability of computation or data collection power, motivate the use of such a naive estimator. In this paper we study the uncertainty quantification, namely the construction, coverage validity, and tightness of confidence intervals, for rare-event probabilities using only sample proportions. In addition to the known normality, Wilson, and exact intervals, we investigate and compare them with two new intervals derived from Chernoff’s inequality and the Berry–Esseen theorem. Moreover, we generalize our results to the natural situation where sampling stops by reaching a target number of rare-event hits. Our findings show that the normality and Wilson intervals are not always valid, but they are close to the newly developed valid intervals in terms of half-width. In contrast, the exact interval is conservative, but safely guarantees the attainment of the nominal confidence level. Our new intervals, while being more conservative than the exact interval, provide useful insights into understanding the tightness of the considered intervals.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"41 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/jpr.2024.43","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the estimation of rare-event probabilities using sample proportions output by naive Monte Carlo or collected data. Unlike using variance reduction techniques, this naive estimator does not have an a priori relative efficiency guarantee. On the other hand, due to the recent surge of sophisticated rare-event problems arising in safety evaluations of intelligent systems, efficiency-guaranteed variance reduction may face implementation challenges which, coupled with the availability of computation or data collection power, motivate the use of such a naive estimator. In this paper we study the uncertainty quantification, namely the construction, coverage validity, and tightness of confidence intervals, for rare-event probabilities using only sample proportions. In addition to the known normality, Wilson, and exact intervals, we investigate and compare them with two new intervals derived from Chernoff’s inequality and the Berry–Esseen theorem. Moreover, we generalize our results to the natural situation where sampling stops by reaching a target number of rare-event hits. Our findings show that the normality and Wilson intervals are not always valid, but they are close to the newly developed valid intervals in terms of half-width. In contrast, the exact interval is conservative, but safely guarantees the attainment of the nominal confidence level. Our new intervals, while being more conservative than the exact interval, provide useful insights into understanding the tightness of the considered intervals.
期刊介绍:
Journal of Applied Probability is the oldest journal devoted to the publication of research in the field of applied probability. It is an international journal published by the Applied Probability Trust, and it serves as a companion publication to the Advances in Applied Probability. Its wide audience includes leading researchers across the entire spectrum of applied probability, including biosciences applications, operations research, telecommunications, computer science, engineering, epidemiology, financial mathematics, the physical and social sciences, and any field where stochastic modeling is used.
A submission to Applied Probability represents a submission that may, at the Editor-in-Chief’s discretion, appear in either the Journal of Applied Probability or the Advances in Applied Probability. Typically, shorter papers appear in the Journal, with longer contributions appearing in the Advances.