Quenched worst-case scenario for root deletion in targeted cutting of random recursive trees

IF 0.7 4区 数学 Q3 STATISTICS & PROBABILITY
Laura Eslava, Sergio I. López, Marco L. Ortiz
{"title":"Quenched worst-case scenario for root deletion in targeted cutting of random recursive trees","authors":"Laura Eslava, Sergio I. López, Marco L. Ortiz","doi":"10.1017/jpr.2024.40","DOIUrl":null,"url":null,"abstract":"We propose a method for cutting down a random recursive tree that focuses on its higher-degree vertices. Enumerate the vertices of a random recursive tree of size <jats:italic>n</jats:italic> according to the decreasing order of their degrees; namely, let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000408_inline1.png\"/> <jats:tex-math>$(v^{(i)})_{i=1}^{n}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> be such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000408_inline2.png\"/> <jats:tex-math>$\\deg(v^{(1)}) \\geq \\cdots \\geq \\deg (v^{(n)})$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The targeted vertex-cutting process is performed by sequentially removing vertices <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000408_inline3.png\"/> <jats:tex-math>$v^{(1)}, v^{(2)}, \\ldots, v^{(n)}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and keeping only the subtree containing the root after each removal. The algorithm ends when the root is picked to be removed. The total number of steps for this procedure, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000408_inline4.png\"/> <jats:tex-math>$K_n$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, is upper bounded by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000408_inline5.png\"/> <jats:tex-math>$Z_{\\geq D}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, which denotes the number of vertices that have degree at least as large as the degree of the root. We prove that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000408_inline6.png\"/> <jats:tex-math>$\\ln Z_{\\geq D}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> grows as <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000408_inline7.png\"/> <jats:tex-math>$\\ln n$</jats:tex-math> </jats:alternatives> </jats:inline-formula> asymptotically and obtain its limiting behavior in probability. Moreover, we obtain that the <jats:italic>k</jats:italic>th moment of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000408_inline8.png\"/> <jats:tex-math>$\\ln Z_{\\geq D}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is proportional to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000408_inline9.png\"/> <jats:tex-math>$(\\!\\ln n)^k$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. As a consequence, we obtain that the first-order growth of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000408_inline10.png\"/> <jats:tex-math>$K_n$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is upper bounded by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000408_inline11.png\"/> <jats:tex-math>$n^{1-\\ln 2}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, which is substantially smaller than the required number of removals if, instead, the vertices were selected uniformly at random.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"58 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/jpr.2024.40","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a method for cutting down a random recursive tree that focuses on its higher-degree vertices. Enumerate the vertices of a random recursive tree of size n according to the decreasing order of their degrees; namely, let $(v^{(i)})_{i=1}^{n}$ be such that $\deg(v^{(1)}) \geq \cdots \geq \deg (v^{(n)})$ . The targeted vertex-cutting process is performed by sequentially removing vertices $v^{(1)}, v^{(2)}, \ldots, v^{(n)}$ and keeping only the subtree containing the root after each removal. The algorithm ends when the root is picked to be removed. The total number of steps for this procedure, $K_n$ , is upper bounded by $Z_{\geq D}$ , which denotes the number of vertices that have degree at least as large as the degree of the root. We prove that $\ln Z_{\geq D}$ grows as $\ln n$ asymptotically and obtain its limiting behavior in probability. Moreover, we obtain that the kth moment of $\ln Z_{\geq D}$ is proportional to $(\!\ln n)^k$ . As a consequence, we obtain that the first-order growth of $K_n$ is upper bounded by $n^{1-\ln 2}$ , which is substantially smaller than the required number of removals if, instead, the vertices were selected uniformly at random.
随机递归树定向切割中根删除的淬火最坏情况假设
我们提出了一种专注于高阶顶点的随机递归树切割方法。根据随机递归树的度数递减顺序,列举大小为 n 的随机递归树的顶点;即,让 $(v^{(i)})_{i=1}^{n}$ 是这样的: $\deg(v^{(1)})\cdots \geq \deg (v^{(n)})$ 。目标顶点切割过程是通过依次删除顶点 $v^{(1)}、v^{(2)}、\ldots、v^{(n)}$ 来完成的,每次删除后只保留包含根的子树。当选中要删除的根时,算法结束。这个过程的总步数 $K_n$ 的上界是 $Z_{\geq D}$,它表示阶数至少和根阶数一样大的顶点的数量。我们证明 $\ln Z_{\geq D}$ 会随着 $\ln n$ 的增长而渐进增长,并得到它在概率上的极限行为。此外,我们还得到 $\ln Z_{\geq D}$ 的第 k 矩与 $(\!\ln n)^k$ 成正比。因此,我们得到 $K_n$ 的一阶增长上限为 $n^{1-\ln 2}$,这大大小于如果顶点是均匀随机选择时所需的删除次数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Probability
Journal of Applied Probability 数学-统计学与概率论
CiteScore
1.50
自引率
10.00%
发文量
92
审稿时长
6-12 weeks
期刊介绍: Journal of Applied Probability is the oldest journal devoted to the publication of research in the field of applied probability. It is an international journal published by the Applied Probability Trust, and it serves as a companion publication to the Advances in Applied Probability. Its wide audience includes leading researchers across the entire spectrum of applied probability, including biosciences applications, operations research, telecommunications, computer science, engineering, epidemiology, financial mathematics, the physical and social sciences, and any field where stochastic modeling is used. A submission to Applied Probability represents a submission that may, at the Editor-in-Chief’s discretion, appear in either the Journal of Applied Probability or the Advances in Applied Probability. Typically, shorter papers appear in the Journal, with longer contributions appearing in the Advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信