Risk sharing under heterogeneous beliefs without convexity

IF 1.1 2区 经济学 Q3 BUSINESS, FINANCE
Felix-Benedikt Liebrich
{"title":"Risk sharing under heterogeneous beliefs without convexity","authors":"Felix-Benedikt Liebrich","doi":"10.1007/s00780-024-00540-6","DOIUrl":null,"url":null,"abstract":"<p>We consider the problem of finding (Pareto-)optimal allocations of risk among finitely many agents. The associated individual risk measures are law-invariant, but with respect to agent-dependent and potentially heterogeneous reference probability measures. Moreover, we assume that the individual risk assessments are consistent with the respective second-order stochastic dominance relations, but remain agnostic about their convexity. A simple sufficient condition for the existence of Pareto optima is provided. The proof combines local comonotonic improvement with a Dieudonné-type argument, which also establishes a link of the optimal allocation problem to the realm of “collapse to the mean” results.</p>","PeriodicalId":50447,"journal":{"name":"Finance and Stochastics","volume":"46 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finance and Stochastics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s00780-024-00540-6","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the problem of finding (Pareto-)optimal allocations of risk among finitely many agents. The associated individual risk measures are law-invariant, but with respect to agent-dependent and potentially heterogeneous reference probability measures. Moreover, we assume that the individual risk assessments are consistent with the respective second-order stochastic dominance relations, but remain agnostic about their convexity. A simple sufficient condition for the existence of Pareto optima is provided. The proof combines local comonotonic improvement with a Dieudonné-type argument, which also establishes a link of the optimal allocation problem to the realm of “collapse to the mean” results.

无凸异质信念下的风险分担
我们考虑的问题是在有限多个代理人之间寻找(帕累托)最佳风险分配。相关的个体风险度量是不变的,但与代理人相关且可能是异质的参考概率度量有关。此外,我们假定个体风险评估与各自的二阶随机支配关系一致,但对其凸性保持沉默。我们为帕累托最优值的存在提供了一个简单的充分条件。证明结合了局部协约改进和 Dieudonné 型论证,这也建立了最优分配问题与 "向均值坍缩 "结果领域的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Finance and Stochastics
Finance and Stochastics 管理科学-数学跨学科应用
CiteScore
2.90
自引率
5.90%
发文量
20
审稿时长
>12 weeks
期刊介绍: The purpose of Finance and Stochastics is to provide a high standard publication forum for research - in all areas of finance based on stochastic methods - on specific topics in mathematics (in particular probability theory, statistics and stochastic analysis) motivated by the analysis of problems in finance. Finance and Stochastics encompasses - but is not limited to - the following fields: - theory and analysis of financial markets - continuous time finance - derivatives research - insurance in relation to finance - portfolio selection - credit and market risks - term structure models - statistical and empirical financial studies based on advanced stochastic methods - numerical and stochastic solution techniques for problems in finance - intertemporal economics, uncertainty and information in relation to finance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信