Asymptotic integrability and Hamilton theory of soliton's motion along large-scale background waves

A. M. Kamchatnov
{"title":"Asymptotic integrability and Hamilton theory of soliton's motion along large-scale background waves","authors":"A. M. Kamchatnov","doi":"arxiv-2408.15662","DOIUrl":null,"url":null,"abstract":"We consider the problem of soliton-mean field interaction for the class of\nasymptotically integrable equations, where the notion of the complete\nintegrability means that the Hamilton equations for the high-frequency wave\npacket propagation along a large-scale background wave have an integral of\nmotion. Using the Stokes remark, we transform this integral to the integral for\nthe soliton's equations of motion and then derive the Hamilton equations for\nthe soliton's dynamics in a universal form expressed in terms of the Riemann\ninvariants for the hydrodynamic background wave. The physical properties are\nspecified by the concrete expressions for the Riemann invariants. The theory is\nillustrated by its application to the soliton's dynamics which is described by\nthe Kaup-Boussinesq system.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the problem of soliton-mean field interaction for the class of asymptotically integrable equations, where the notion of the complete integrability means that the Hamilton equations for the high-frequency wave packet propagation along a large-scale background wave have an integral of motion. Using the Stokes remark, we transform this integral to the integral for the soliton's equations of motion and then derive the Hamilton equations for the soliton's dynamics in a universal form expressed in terms of the Riemann invariants for the hydrodynamic background wave. The physical properties are specified by the concrete expressions for the Riemann invariants. The theory is illustrated by its application to the soliton's dynamics which is described by the Kaup-Boussinesq system.
孤子沿大尺度背景波运动的渐近可积分性和汉密尔顿理论
我们考虑了渐近可积分方程类的孤子-均场相互作用问题,其中完全可积分概念意味着高频波包沿大尺度背景波传播的汉密尔顿方程有一个运动积分。利用斯托克斯注释,我们将该积分转换为孤子运动方程的积分,然后推导出孤子动力学的汉密尔顿方程,该方程以流体动力背景波的黎曼变量的通用形式表示。黎曼不变式的具体表达式指明了其物理特性。该理论通过应用于考普-布西尼斯克系统描述的孤子动力学得到了展示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信