Bilinearization-reduction approach to the classical and nonlocal semi-discrete modified Korteweg-de Vries equations with nonzero backgrounds

Xiao Deng, Hongyang Chen, Song-Lin Zhao, Guanlong Ren
{"title":"Bilinearization-reduction approach to the classical and nonlocal semi-discrete modified Korteweg-de Vries equations with nonzero backgrounds","authors":"Xiao Deng, Hongyang Chen, Song-Lin Zhao, Guanlong Ren","doi":"arxiv-2409.06168","DOIUrl":null,"url":null,"abstract":"Quasi double Casoratian solutions are derived for a bilinear system\nreformulated from the coupled semi-discrete modified Korteweg-de Vries\nequations with nonzero backgrounds. These solutions, when applied with the\nclassical and nonlocal reduction techniques, also satisfy the corresponding\nclassical and nonlocal semi-discrete modified Korteweg-de Vries equations with\nnonzero backgrounds. They can be expressed explicitly, allowing for an easy\ninvestigation of the dynamics of systems. As illustrative examples, the\ndynamics of solitonic, periodic and rational solutions with a plane wave\nbackground are examined for the focusing semi-discrete Korteweg-de Vries\nequation and the defocusing reverse-space-time complex semi-discrete\nKorteweg-de Vries equation.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quasi double Casoratian solutions are derived for a bilinear system reformulated from the coupled semi-discrete modified Korteweg-de Vries equations with nonzero backgrounds. These solutions, when applied with the classical and nonlocal reduction techniques, also satisfy the corresponding classical and nonlocal semi-discrete modified Korteweg-de Vries equations with nonzero backgrounds. They can be expressed explicitly, allowing for an easy investigation of the dynamics of systems. As illustrative examples, the dynamics of solitonic, periodic and rational solutions with a plane wave background are examined for the focusing semi-discrete Korteweg-de Vries equation and the defocusing reverse-space-time complex semi-discrete Korteweg-de Vries equation.
经典和非局部半离散修正科特韦格-德-弗里斯非零背景方程的双线性化还原方法
从非零背景的耦合半离散修正 Korteweg-de Vriese 方程推导出了双线性系统的准双 Casoratian 解。这些解在应用经典和非局部还原技术时,也满足相应的经典和非局部半离散修正 Korteweg-de Vries 非零背景方程。这些方程可以明确表达,从而便于对系统动力学进行研究。作为示例,研究了聚焦半离散 Korteweg-de Vries 方程和失焦反向时空复半离散 Korteweg-de Vries 方程中具有平面波背景的孤子、周期和有理解的动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信