Symmetries of Toda type 3D lattices

I. T. Habibullin, A. R. Khakimova
{"title":"Symmetries of Toda type 3D lattices","authors":"I. T. Habibullin, A. R. Khakimova","doi":"arxiv-2409.07017","DOIUrl":null,"url":null,"abstract":"The duality between a class of the Davey-Stewartson type coupled systems and\na class of two-dimensional Toda type lattices is discussed. For the recently\nfound integrable lattice the hierarchy of symmetries is described. Second and\nthird order symmetries are presented in explicit form. Corresponding coupled\nsystems are given. An original method for constructing exact solutions to\ncoupled systems is suggested based on the Darboux integrable reductions of the\ndressing chains. Some new solutions for coupled systems related to the Volterra\nlattice are presented as illustrative examples.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The duality between a class of the Davey-Stewartson type coupled systems and a class of two-dimensional Toda type lattices is discussed. For the recently found integrable lattice the hierarchy of symmetries is described. Second and third order symmetries are presented in explicit form. Corresponding coupled systems are given. An original method for constructing exact solutions to coupled systems is suggested based on the Darboux integrable reductions of the dressing chains. Some new solutions for coupled systems related to the Volterra lattice are presented as illustrative examples.
户田型三维网格的对称性
讨论了一类戴维-斯图尔特森型耦合系统与一类二维户田型晶格之间的对偶性。对于最近发现的可积分网格,描述了对称性的层次结构。二阶和三阶对称性以明确的形式呈现。给出了相应的耦合系统。在达尔布可积分还原处理链的基础上,提出了构建耦合系统精确解的独创方法。作为示例,介绍了一些与伏特列阵有关的耦合系统的新解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信