Min-phase-isometries on the unit sphere of $$\mathcal {L}^\infty (\Gamma )$$ -type spaces

IF 0.9 3区 数学 Q2 MATHEMATICS
Dongni Tan, Lu Yuan, Peng Yang
{"title":"Min-phase-isometries on the unit sphere of $$\\mathcal {L}^\\infty (\\Gamma )$$ -type spaces","authors":"Dongni Tan, Lu Yuan, Peng Yang","doi":"10.1007/s00010-024-01119-4","DOIUrl":null,"url":null,"abstract":"<p>We show that every surjective mapping <i>f</i> between the unit spheres of two real <span>\\(\\mathcal {L}^\\infty (\\Gamma )\\)</span>-type spaces satisfies </p><span>$$\\begin{aligned} \\min \\{\\Vert f(x)+f(y)\\Vert ,\\Vert f(x)-f(y)\\Vert \\}=\\min \\{\\Vert x+y\\Vert ,\\Vert x-y\\Vert \\}\\quad (x,y\\in S_X) \\end{aligned}$$</span><p>if and only if <i>f</i> is phase-equivalent to an isometry, i.e., there is a phase-function <span>\\(\\varepsilon \\)</span> from the unit sphere of the <span>\\(\\mathcal {L}^\\infty (\\Gamma )\\)</span>-type space onto <span>\\(\\{-1,1\\}\\)</span> such that <span>\\(\\varepsilon \\cdot f\\)</span> is a surjective isometry between the unit spheres of two real <span>\\(\\mathcal {L}^\\infty (\\Gamma )\\)</span>-type spaces, and furthermore, this isometry can be extended to a linear isometry on the whole space <span>\\(\\mathcal {L}^\\infty (\\Gamma )\\)</span>. We also give an example to show that these are not true if “min” is replaced by “max”.</p>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00010-024-01119-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that every surjective mapping f between the unit spheres of two real \(\mathcal {L}^\infty (\Gamma )\)-type spaces satisfies

$$\begin{aligned} \min \{\Vert f(x)+f(y)\Vert ,\Vert f(x)-f(y)\Vert \}=\min \{\Vert x+y\Vert ,\Vert x-y\Vert \}\quad (x,y\in S_X) \end{aligned}$$

if and only if f is phase-equivalent to an isometry, i.e., there is a phase-function \(\varepsilon \) from the unit sphere of the \(\mathcal {L}^\infty (\Gamma )\)-type space onto \(\{-1,1\}\) such that \(\varepsilon \cdot f\) is a surjective isometry between the unit spheres of two real \(\mathcal {L}^\infty (\Gamma )\)-type spaces, and furthermore, this isometry can be extended to a linear isometry on the whole space \(\mathcal {L}^\infty (\Gamma )\). We also give an example to show that these are not true if “min” is replaced by “max”.

$$\mathcal {L}^\infty (\Gamma )$$ 型空间单位球上的最小相位等分线
我们证明,两个实(mathcal {L}^infty (\Gamma )\ )型空间的单位球之间的每一个投射映射 f 都满足 $$\begin{aligned}\min ({Vert f(x)+f(y)\Vert ,\Vert f(x)-f(y)\Vert }=min({Vert x+y\Vert ,\Vert x-y\Vert })quad (x,y\in S_X) (end{aligned})$$如果并且只有当 f 是相等于等值线的时候,也就是说、有一个相位函数(varepsilon)从单位球的(mathcal {L}^\infty (\Gamma )\ )类型空间到({-1、1}\) 使得 (varepsilon \cdot f\) 是两个实 \(\mathcal {L}^\infty (\Gamma )\) 型空间的单位球之间的一个投射等距,而且,这个等距可以扩展为整个 \(\mathcal {L}^\infty (\Gamma )\) 空间上的线性等距。我们还将举例说明,如果把 "min "换成 "max",这些就都不成立了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信