Comparative approach on crop detection using machine learning and deep learning techniques

IF 1.6 Q2 ENGINEERING, MULTIDISCIPLINARY
V. Nithya, M. S. Josephine, V. Jeyabalaraja
{"title":"Comparative approach on crop detection using machine learning and deep learning techniques","authors":"V. Nithya, M. S. Josephine, V. Jeyabalaraja","doi":"10.1007/s13198-024-02483-9","DOIUrl":null,"url":null,"abstract":"<p>Agriculture is an expanding area of study. Crop prediction in agriculture is highly dependent on soil and environmental factors, such as rainfall, humidity, and temperature. Previously, farmers had the authority to select the crop to be farmed, oversee its development, and ascertain the optimal harvest time. The farming community is facing challenges in sustaining its practices due to the swift alterations in climatic conditions. Therefore, machine learning algorithms have replaced traditional methods in predicting agricultural productivity in recent years. To guarantee optimal precision through a specific machine learning approach. Authors extend their approach not limited to Machine Learning but also with Deep Learning Techniques. We use machine and deep learning algorithms to predict crop outcomes accurately. In this proposed model, we utilise machine learning algorithms such as Naive Bayes, decision tree, and KNN. It is worth noting that the decision tree algorithm demonstrates superior performance compared to the other algorithms, achieving an accuracy rate of 83%. In order to enhance the precision, we have suggested implementing a deep learning technique, specifically a convolutional neural network, to identify the crops. Achieving an accuracy of 93.54% was made possible by implementing this advanced deep-learning model.</p>","PeriodicalId":14463,"journal":{"name":"International Journal of System Assurance Engineering and Management","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of System Assurance Engineering and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13198-024-02483-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Agriculture is an expanding area of study. Crop prediction in agriculture is highly dependent on soil and environmental factors, such as rainfall, humidity, and temperature. Previously, farmers had the authority to select the crop to be farmed, oversee its development, and ascertain the optimal harvest time. The farming community is facing challenges in sustaining its practices due to the swift alterations in climatic conditions. Therefore, machine learning algorithms have replaced traditional methods in predicting agricultural productivity in recent years. To guarantee optimal precision through a specific machine learning approach. Authors extend their approach not limited to Machine Learning but also with Deep Learning Techniques. We use machine and deep learning algorithms to predict crop outcomes accurately. In this proposed model, we utilise machine learning algorithms such as Naive Bayes, decision tree, and KNN. It is worth noting that the decision tree algorithm demonstrates superior performance compared to the other algorithms, achieving an accuracy rate of 83%. In order to enhance the precision, we have suggested implementing a deep learning technique, specifically a convolutional neural network, to identify the crops. Achieving an accuracy of 93.54% was made possible by implementing this advanced deep-learning model.

Abstract Image

使用机器学习和深度学习技术进行作物检测的比较方法
农业是一个不断扩展的研究领域。农业中的作物预测在很大程度上取决于土壤和环境因素,如降雨量、湿度和温度。以前,农民有权选择要耕种的作物、监督其生长发育并确定最佳收获时间。由于气候条件的急剧变化,农业社区在维持耕作方面正面临着挑战。因此,近年来机器学习算法取代了传统的农业生产力预测方法。通过特定的机器学习方法来保证最佳精度。作者将他们的方法不仅限于机器学习,还扩展到了深度学习技术。我们使用机器学习和深度学习算法来准确预测作物结果。在这个建议的模型中,我们使用了机器学习算法,如 Naive Bayes、决策树和 KNN。值得注意的是,与其他算法相比,决策树算法表现出更优越的性能,准确率达到 83%。为了提高准确率,我们建议采用深度学习技术,特别是卷积神经网络来识别农作物。通过采用这种先进的深度学习模型,准确率达到了 93.54%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
10.00%
发文量
252
期刊介绍: This Journal is established with a view to cater to increased awareness for high quality research in the seamless integration of heterogeneous technologies to formulate bankable solutions to the emergent complex engineering problems. Assurance engineering could be thought of as relating to the provision of higher confidence in the reliable and secure implementation of a system’s critical characteristic features through the espousal of a holistic approach by using a wide variety of cross disciplinary tools and techniques. Successful realization of sustainable and dependable products, systems and services involves an extensive adoption of Reliability, Quality, Safety and Risk related procedures for achieving high assurancelevels of performance; also pivotal are the management issues related to risk and uncertainty that govern the practical constraints encountered in their deployment. It is our intention to provide a platform for the modeling and analysis of large engineering systems, among the other aforementioned allied goals of systems assurance engineering, leading to the enforcement of performance enhancement measures. Achieving a fine balance between theory and practice is the primary focus. The Journal only publishes high quality papers that have passed the rigorous peer review procedure of an archival scientific Journal. The aim is an increasing number of submissions, wide circulation and a high impact factor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信