Certain Observations on Tightness and Topological Games in Bornology

IF 1.1 3区 数学 Q1 MATHEMATICS
Debraj Chandra, Pratulananda Das, Subhankar Das
{"title":"Certain Observations on Tightness and Topological Games in Bornology","authors":"Debraj Chandra, Pratulananda Das, Subhankar Das","doi":"10.1007/s00025-024-02256-7","DOIUrl":null,"url":null,"abstract":"<p>This article is a continuation of our investigations in the function space <i>C</i>(<i>X</i>) with respect to the topology <span>\\(\\tau ^s_\\mathfrak {B}\\)</span> of strong uniform convergence on <span>\\(\\mathfrak {B}\\)</span> in line of (Chandra et al. in Indag Math 31:43-63, 2020; Das et al. in Topol Appl 310:108005, 2022) using the idea of strong uniform convergence (Beer and Levi in J Math Anal Appl 350:568-589, 2009) on a bornology. First we focus on the notion of the tightness property of <span>\\((C(X),\\tau ^s_\\mathfrak {B})\\)</span> and some of its variations such as the supertightness, the Id-fan tightness and the <i>T</i>-tightness. Certain situations are discussed when <i>C</i>(<i>X</i>) is a k-space with respect to the topology <span>\\(\\tau ^s_\\mathfrak {B}\\)</span>. Next the notions of strong <span>\\(\\mathfrak {B}\\)</span>-open game and <span>\\(\\gamma _{\\mathfrak {B}^s}\\)</span>-open game on <i>X</i> are introduced and some of its consequences are investigated. Finally, we consider discretely selective property and related games. On <span>\\((C(X),\\tau ^s_\\mathfrak {B})\\)</span> several interactions between topological games related to discretely selective property, the Gruenhage game on <span>\\((C(X),\\tau ^s_\\mathfrak {B})\\)</span> and certain games on <i>X</i> are presented.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02256-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This article is a continuation of our investigations in the function space C(X) with respect to the topology \(\tau ^s_\mathfrak {B}\) of strong uniform convergence on \(\mathfrak {B}\) in line of (Chandra et al. in Indag Math 31:43-63, 2020; Das et al. in Topol Appl 310:108005, 2022) using the idea of strong uniform convergence (Beer and Levi in J Math Anal Appl 350:568-589, 2009) on a bornology. First we focus on the notion of the tightness property of \((C(X),\tau ^s_\mathfrak {B})\) and some of its variations such as the supertightness, the Id-fan tightness and the T-tightness. Certain situations are discussed when C(X) is a k-space with respect to the topology \(\tau ^s_\mathfrak {B}\). Next the notions of strong \(\mathfrak {B}\)-open game and \(\gamma _{\mathfrak {B}^s}\)-open game on X are introduced and some of its consequences are investigated. Finally, we consider discretely selective property and related games. On \((C(X),\tau ^s_\mathfrak {B})\) several interactions between topological games related to discretely selective property, the Gruenhage game on \((C(X),\tau ^s_\mathfrak {B})\) and certain games on X are presented.

关于博恩学中严密性和拓扑博弈的若干观察
本文是我们在函数空间C(X)中关于强均匀收敛拓扑学\(\tau ^s_\mathfrak {B}\)的研究的延续,与(Chandra et al.在 Indag Math 31:43-63, 2020 年;Das 等人在 Topol Appl 310:108005, 2022 年)的思路,使用强均匀收敛的思想(Beer 和 Levi 在 J Math Anal Appl 350:568-589, 2009 年)在生理学上。首先,我们将重点放在 C(X) 的紧密性概念上,以及它的一些变化,如超紧密性、Id-fan 紧密性和 T-紧密性。当 C(X) 是关于拓扑学 \(\tau ^s_\mathfrak {B}\) 的 k 空间时,会讨论某些情况。接下来,我们引入了X上的强(\mathfrak {B}\)-开放博弈和(\gamma _{\mathfrak {B}^s}\)-开放博弈的概念,并研究了它们的一些后果。最后,我们考虑了离散选择属性及相关博弈。在 \((C(X),\tau ^s_\mathfrak {B})\) 上,我们介绍了与离散选择性有关的拓扑博弈、在 \((C(X),\tau ^s_\mathfrak {B})\) 上的格鲁恩哈格博弈和 X 上的某些博弈之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信