Bohr Phenomena for Holomorphic Mappings with Values in Several Complex Variables

IF 1.1 3区 数学 Q1 MATHEMATICS
Hidetaka Hamada, Tatsuhiro Honda
{"title":"Bohr Phenomena for Holomorphic Mappings with Values in Several Complex Variables","authors":"Hidetaka Hamada, Tatsuhiro Honda","doi":"10.1007/s00025-024-02269-2","DOIUrl":null,"url":null,"abstract":"<p>In the first part of this paper, we study several Bohr radii for holomorphic mappings with values in the unit polydisc <span>\\(\\mathbb {U}^N\\)</span> in <span>\\(\\mathbb {C}^{N}\\)</span>. In particular, we obtain the new Bohr radius <span>\\(r_{k,m}^{***}\\)</span> for holomorphic mappings with lacunary series. Further, we show that when <span>\\(m\\ge 1\\)</span>, <span>\\(r_{k,m}^{***}\\)</span> is asymptotically sharp as <span>\\(N\\rightarrow \\infty \\)</span>. Note that when <span>\\(m\\ge 1\\)</span>, <span>\\(r_{k,m}^{***}\\)</span> is completely different from the cases with values in the unit disc <span>\\(\\mathbb {U}\\)</span> and in the complex Hilbert balls with higher dimensions. In the second part of this paper, we obtain the Bohr type inequality for holomorphic mappings <i>F</i> with values in the unit ball of a JB<span>\\(^*\\)</span>-triple which is a generalization of that for holomorphic mappings <i>F</i> with values in the unit ball of a complex Banach space of the form <span>\\(F(z)=f(z)z\\)</span>, where <i>f</i> is a <span>\\(\\mathbb {C}\\)</span>-valued holomorphic function.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":"63 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02269-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the first part of this paper, we study several Bohr radii for holomorphic mappings with values in the unit polydisc \(\mathbb {U}^N\) in \(\mathbb {C}^{N}\). In particular, we obtain the new Bohr radius \(r_{k,m}^{***}\) for holomorphic mappings with lacunary series. Further, we show that when \(m\ge 1\), \(r_{k,m}^{***}\) is asymptotically sharp as \(N\rightarrow \infty \). Note that when \(m\ge 1\), \(r_{k,m}^{***}\) is completely different from the cases with values in the unit disc \(\mathbb {U}\) and in the complex Hilbert balls with higher dimensions. In the second part of this paper, we obtain the Bohr type inequality for holomorphic mappings F with values in the unit ball of a JB\(^*\)-triple which is a generalization of that for holomorphic mappings F with values in the unit ball of a complex Banach space of the form \(F(z)=f(z)z\), where f is a \(\mathbb {C}\)-valued holomorphic function.

具有多个复变量值的全态映射的玻尔现象
在本文的第一部分,我们研究了在 \(\mathbb {C}^{N}\) 的单位多圆盘中具有值的全态映射的几个玻尔半径。特别是,我们得到了全形映射的新玻尔半径 \(r_{k,m}^{****}\)。此外,我们还证明了当\(m\ge 1\) 时,\(r_{k,m}^{****}\) 是渐近尖锐的\(N\rightarrow \infty \)。请注意,当\(m\ge 1\) 时,\(r_{k,m}^{****}\) 完全不同于在单位圆盘\(\mathbb {U}\)中取值的情况,也不同于在维数更高的复希尔伯特球中取值的情况。在本文的第二部分,我们得到了值在 JB\(^*\)-triple 的单位球上的全态映射 F 的玻尔型不等式,它是值在复巴纳赫空间的单位球上的全态映射 F 的不等式的一般化,形式为 \(F(z)=f(z)z\),其中 f 是一个 \(\mathbb {C}\)值的全态函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信