m-symmetric Operators with Elementary Operator Entries

IF 1.1 3区 数学 Q1 MATHEMATICS
B. P. Duggal, I. H. Kim
{"title":"m-symmetric Operators with Elementary Operator Entries","authors":"B. P. Duggal, I. H. Kim","doi":"10.1007/s00025-024-02272-7","DOIUrl":null,"url":null,"abstract":"<p>Given Banach space operators <i>A</i>, <i>B</i>, let <span>\\(\\delta _{A,B}\\)</span> denote the generalised derivation <span>\\(\\delta (X)=(L_{A}-R_{B})(X)=AX-XB\\)</span> and <span>\\(\\triangle _{A,B}\\)</span> the length two elementary operator <span>\\(\\triangle _{A,B}(X)=(I-L_AR_B)(X)=X-AXB\\)</span>. This note considers the structure of <i>m</i>-symmetric operators <span>\\(\\delta ^m_{\\triangle _{A_1,B_1},\\triangle _{A_2,B_2}}(I)=(L_{\\triangle _{A_1,B_1}} - R_{\\triangle _{A_2,B_2}})^m(I)=0\\)</span>. It is seen that there exist scalars <span>\\(\\lambda _i\\in \\sigma _a(B_1)\\)</span>, <span>\\(1\\le i\\le 2\\)</span>, such that <span>\\(\\delta ^m_{\\lambda _1 A_1,\\lambda _2 A_2}(I)=0\\)</span>. Translated to Hilbert space operators <i>A</i> and <i>B</i> this implies that if <span>\\(\\delta ^m_{\\triangle _{A^*,B^*},\\triangle _{A,B}}(I)=0\\)</span>, then there exists <span>\\({\\overline{\\lambda }}\\in \\sigma _a(B^*)\\)</span> such that <span>\\(\\delta ^m_{(\\lambda A)^*,\\lambda A}(I)=0=\\delta ^m_{{\\overline{\\lambda }}B,\\lambda B^*}(I)\\)</span>. We prove that the operator <span>\\(\\delta ^m_{\\triangle _{A^*,B^*},\\triangle _{A,B}}\\)</span> is compact if and only if (i) there exists a real number <span>\\(\\alpha \\)</span> and finite sequnces (i) <span>\\(\\{a_j\\}_{j=1}^n\\subseteq \\sigma (A)\\)</span>, <span>\\(\\{b_j\\}_{j=1}^n\\subseteq \\sigma (B)\\)</span> such that <span>\\(a_jb_j=1-\\alpha \\)</span>, <span>\\(1\\le j\\le n\\)</span>; (ii) decompositions <span>\\(\\oplus _{j=1}^n {\\mathcal {H}}_j\\)</span> and <span>\\(\\oplus _{j=1}^n{\\texttt {H}_J}\\)</span> of <span>\\({\\mathcal {H}}\\)</span> such that <span>\\(\\oplus _{j=1}^n{(A-a_j I)|_{\\ H_j}}\\)</span> and <span>\\(\\oplus _{j=1}^n{(B-b_j I)|_{\\texttt {H}_j}}\\)</span> are nilpotent. If <span>\\(\\delta ^{m}_{\\triangle _{A^*,B^*},\\triangle _{A,B}}(I)=0\\)</span> implies <span>\\(\\delta _{\\triangle _{A^*,B^*},\\triangle _{A,B}}(I)=0\\)</span>, then <i>A</i> and <i>B</i> satisfy a (Putnam-Fuglede type) commutativity theorem; conversely, a sufficient condition for <span>\\(\\delta ^{m}_{\\triangle _{A^*,B^*},\\triangle _{A,B}}(I)=0\\)</span> to imply <span>\\(\\delta _{\\triangle _{A^*,B^*},\\triangle _{A,B}}(I)=0\\)</span> is that <span>\\({\\lambda }A\\)</span> and <span>\\({\\overline{\\lambda }}B\\)</span> satisfy the commutativity property for scalars <span>\\(\\overline{lambda} \\in \\sigma _a(B^*)\\)</span>. An analogous result is seen to hold for the operators <span>\\(\\triangle ^m_{\\delta _{A^*,B^*},\\delta _{A,B}}\\)</span> and <span>\\(\\triangle ^m_{\\delta _{A^*,B^*},\\delta _{A,B}}(I)\\)</span>. Perturbation by commuting nilpotents is considered.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02272-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given Banach space operators AB, let \(\delta _{A,B}\) denote the generalised derivation \(\delta (X)=(L_{A}-R_{B})(X)=AX-XB\) and \(\triangle _{A,B}\) the length two elementary operator \(\triangle _{A,B}(X)=(I-L_AR_B)(X)=X-AXB\). This note considers the structure of m-symmetric operators \(\delta ^m_{\triangle _{A_1,B_1},\triangle _{A_2,B_2}}(I)=(L_{\triangle _{A_1,B_1}} - R_{\triangle _{A_2,B_2}})^m(I)=0\). It is seen that there exist scalars \(\lambda _i\in \sigma _a(B_1)\), \(1\le i\le 2\), such that \(\delta ^m_{\lambda _1 A_1,\lambda _2 A_2}(I)=0\). Translated to Hilbert space operators A and B this implies that if \(\delta ^m_{\triangle _{A^*,B^*},\triangle _{A,B}}(I)=0\), then there exists \({\overline{\lambda }}\in \sigma _a(B^*)\) such that \(\delta ^m_{(\lambda A)^*,\lambda A}(I)=0=\delta ^m_{{\overline{\lambda }}B,\lambda B^*}(I)\). We prove that the operator \(\delta ^m_{\triangle _{A^*,B^*},\triangle _{A,B}}\) is compact if and only if (i) there exists a real number \(\alpha \) and finite sequnces (i) \(\{a_j\}_{j=1}^n\subseteq \sigma (A)\), \(\{b_j\}_{j=1}^n\subseteq \sigma (B)\) such that \(a_jb_j=1-\alpha \), \(1\le j\le n\); (ii) decompositions \(\oplus _{j=1}^n {\mathcal {H}}_j\) and \(\oplus _{j=1}^n{\texttt {H}_J}\) of \({\mathcal {H}}\) such that \(\oplus _{j=1}^n{(A-a_j I)|_{\ H_j}}\) and \(\oplus _{j=1}^n{(B-b_j I)|_{\texttt {H}_j}}\) are nilpotent. If \(\delta ^{m}_{\triangle _{A^*,B^*},\triangle _{A,B}}(I)=0\) implies \(\delta _{\triangle _{A^*,B^*},\triangle _{A,B}}(I)=0\), then A and B satisfy a (Putnam-Fuglede type) commutativity theorem; conversely, a sufficient condition for \(\delta ^{m}_{\triangle _{A^*,B^*},\triangle _{A,B}}(I)=0\) to imply \(\delta _{\triangle _{A^*,B^*},\triangle _{A,B}}(I)=0\) is that \({\lambda }A\) and \({\overline{\lambda }}B\) satisfy the commutativity property for scalars \(\overline{lambda} \in \sigma _a(B^*)\). An analogous result is seen to hold for the operators \(\triangle ^m_{\delta _{A^*,B^*},\delta _{A,B}}\) and \(\triangle ^m_{\delta _{A^*,B^*},\delta _{A,B}}(I)\). Perturbation by commuting nilpotents is considered.

带基本算子项的 m 对称算子
给定巴拿赫空间算子 A、B,让 \(\delta _{A,B}\) 表示广义推导 \(\delta (X)=(L_{A}-R_{B})(X)=AX-XB\) 和 \(\triangle _{A,B}\) 表示长度为二的基本算子 \(\triangle _{A,B}(X)=(I-L_AR_B)(X)=X-AXB\).本注考虑了 m 对称算子的结构 \(\delta ^m_{\triangle _{A_1,B_1},\triangle _{A_2,B_2}}(I)=(L_{\triangle _{A_1,B_1}} - R_{\triangle _{A_2,B_2}})^m(I)=0\).可以看出,存在标量 \(\lambda _i\in \sigma _a(B_1)\), \(1\le i\le 2\), such that \(\delta ^m_{\lambda _1 A_1,\lambda _2 A_2}(I)=0\).转换到希尔伯特空间算子 A 和 B,这意味着如果 \(\delta ^m_{triangle _{A^*,B^*},\triangle _{A,B}}(I)=0\)、then there exists \({\overline{lambda }}\in \sigma _a(B^*)\) such that \(\delta ^m_{(\lambda A)^*,\lambda A}(I)=0=\delta ^m_{\overline{lambda }}B,\lambda B^*}(I)\).我们证明算子 \(\delta ^m_{\triangle _{A^*,B^*},\triangle _{A,B}}) 是紧凑的,当且仅当 (i) 存在实数 \(\α \) 和有限序列 (i) \(\{a_j\}_{j=1}^n\subseteq \sigma (A)\)、\(\{b_j\}_{j=1}^n\subseteq\sigma (B)\) such that \(a_jb_j=1-\alpha \),\(1\le j\le n\);(ii) 分解 \({\mathcal {H}}\) 的 \(oplus _{j=1}^n {\mathcal {H}}_j\) 和 \(oplus _{j=1}^n{texttt {H}_J}\) ,使得 \(oplus _{j=1}^n{(A-a_j I)|_{\ H_j}}\) 和 \(\oplus _{j=1}^n{(B-b_j I)|_{text\tt {H}_j}}\) 都是零势。如果 \(\delta ^{m}_{triangle _{A^*,B^*},\triangle _{A,B}}(I)=0\) 意味着 \(\delta _{triangle _{A^*,B^*},\triangle _{A,B}}(I)=0\), 那么 A 和 B 满足(普特南-福格勒德类型的)换元定理;反过来,(\delta ^{m}_{\triangle _{A^*,B^*},\triangle _{A,B}}(I)=0\) 的充分条件意味着 \(\delta _{triangle _{A^*,B^*},\triangle _{A、B}}(I)=0)是指 \({\lambda }A\) 和 \({\overline{\lambda }}B\) 满足标量 \(\overline{lambda} \in \sigma _a(B^*)\)的交换属性。类似的结果也适用于算子 \(\triangle ^m_{\delta _{A^*,B^*},\delta _{A,B}}\) 和 \(\triangle ^m_{\delta _{A^*,B^*},\delta _{A,B}}(I)\).考虑了共价零点的扰动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信