Uniform Convergence of Global Least Energy Solutions to Dirichlet Systems in Non-reflexive Orlicz–Sobolev Spaces

IF 1.1 3区 数学 Q1 MATHEMATICS
Grey Ercole, Giovany M. Figueiredo, Abdolrahman Razani
{"title":"Uniform Convergence of Global Least Energy Solutions to Dirichlet Systems in Non-reflexive Orlicz–Sobolev Spaces","authors":"Grey Ercole, Giovany M. Figueiredo, Abdolrahman Razani","doi":"10.1007/s00025-024-02270-9","DOIUrl":null,"url":null,"abstract":"<p>We prove that for each <span>\\(p\\in (1,\\infty )\\)</span> the energy functional associated with the Dirichlet system </p><span>$$\\begin{aligned} \\left\\{ \\begin{array}{lll} -{\\text {div}}(\\phi _{p}(\\left| \\nabla u\\right| )\\nabla u)=\\partial _{1}F(u,v) &amp; \\textrm{in} &amp; \\Omega ,\\\\ -{\\text {div}}(\\phi _{p}(\\left| \\nabla v\\right| )\\nabla v)=\\partial _{2}F(u,v) &amp; \\textrm{in} &amp; \\Omega ,\\\\ u=v=0 &amp; \\textrm{on} &amp; \\partial \\Omega , \\end{array} \\right. \\end{aligned}$$</span><p>admits at least one global, nonnegative minimizer <span>\\((u_{p},v_{p})\\in W_{0}^{\\Phi _{p}}(\\Omega )\\times W_{0}^{\\Phi _{p}}(\\Omega )\\)</span> which converges uniformly on <span>\\(\\overline{\\Omega }\\)</span> to <span>\\((d_{\\Omega },d_{\\Omega }),\\)</span> as <span>\\(p\\rightarrow \\infty \\)</span>. Here <span>\\(\\Phi _{p}(t):=\\int _{0}^{t}s\\phi _{p}(\\left| s\\right| )\\textrm{d}s\\)</span> and <span>\\(d_{\\Omega }\\)</span> stands for the distance function to the boundary <span>\\(\\partial \\Omega \\)</span>.\n</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02270-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that for each \(p\in (1,\infty )\) the energy functional associated with the Dirichlet system

$$\begin{aligned} \left\{ \begin{array}{lll} -{\text {div}}(\phi _{p}(\left| \nabla u\right| )\nabla u)=\partial _{1}F(u,v) & \textrm{in} & \Omega ,\\ -{\text {div}}(\phi _{p}(\left| \nabla v\right| )\nabla v)=\partial _{2}F(u,v) & \textrm{in} & \Omega ,\\ u=v=0 & \textrm{on} & \partial \Omega , \end{array} \right. \end{aligned}$$

admits at least one global, nonnegative minimizer \((u_{p},v_{p})\in W_{0}^{\Phi _{p}}(\Omega )\times W_{0}^{\Phi _{p}}(\Omega )\) which converges uniformly on \(\overline{\Omega }\) to \((d_{\Omega },d_{\Omega }),\) as \(p\rightarrow \infty \). Here \(\Phi _{p}(t):=\int _{0}^{t}s\phi _{p}(\left| s\right| )\textrm{d}s\) and \(d_{\Omega }\) stands for the distance function to the boundary \(\partial \Omega \).

非反折 Orlicz-Sobolev 空间中 Dirichlet 系统的全局最小能量解的均匀收敛性
我们证明,对于每一个(p\in (1,\infty))与德里赫特系统相关的能量函数$$\begin{aligned}。\left{ \begin{array}{lll} -{text {div}}(\phi _{p}(\left| \nabla u\right| )\nabla u)=\partial _{1}F(u,v) & \textrm{in} &;\Omega ,\ -{text {div}}(\phi _{p}(\left|\nabla v\right|)\nabla v)=\partial _{2}F(u,v) & \textrm{in} & \Omega ,\ u=v=0 & \textrm{on} & \partial \Omega , \end{array}.\right.\end{aligned}$$允许至少一个全局的、非负的最小化((u_{p}、v_{p})in W_{0}^{Phi _{p}}(\Omega )\times W_{0}^{Phi _{p}}(\Omega )\)which converges uniformly on \(\overline{Omega }\) to \((d_{\Omega },d_{\Omega }),\) as \(p\rightarrow \infty \)。这里(\Phi _{p}(t):=\int _{0}^{t}s\phi _{p}(\left| s\right| )\textrm{d}s\) 和\(d_{\Omega }\) 代表到边界的距离函数\(\partial \Omega \)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信