Lower and Upper Bounds for the Generalized Csiszár f-divergence Operator Mapping

IF 1.1 3区 数学 Q1 MATHEMATICS
Silvestru Sever Dragomir, Ismail Nikoufar
{"title":"Lower and Upper Bounds for the Generalized Csiszár f-divergence Operator Mapping","authors":"Silvestru Sever Dragomir, Ismail Nikoufar","doi":"10.1007/s00025-024-02266-5","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\({\\textbf{A}}=\\{A_{1},...,A_{n}\\}\\)</span> and <span>\\({\\textbf{B}}=\\{B_{1},...,B_{n}\\}\\)</span> be two finite sequences of strictly positive operators on a Hilbert space <span>\\( {\\mathcal {H}}\\)</span> and <i>f</i>, <span>\\(h:{\\mathbb {I}}\\rightarrow {\\mathbb {R}}\\)</span> continuous functions with <span>\\(h&gt;0\\)</span>.. We consider the generalized Csiszár <i>f</i>-divergence operator mapping defined by </p><span>$$\\begin{aligned} {\\textbf{I}}_{f\\Delta h}({\\textbf{A}},{\\textbf{B}})=\\sum _{i=1}^{n}P_{f\\Delta h}(A_{i},B_{i}), \\end{aligned}$$</span><p>where </p><span>$$\\begin{aligned} P_{f\\Delta h}(A,B):=h(A)^{1/2}f(h(A)^{-1/2}Bh(A)^{-1/2})h(A)^{1/2} \\end{aligned}$$</span><p>is introduced for every strictly positive operator <i>A</i> and every self-adjoint operator <i>B</i>, where the spectrum of the operators </p><span>$$\\begin{aligned} A, A^{-1/2}BA^{-1/2}\\text { and }h(A)^{-1/2}Bh(A)^{-1/2} \\end{aligned}$$</span><p>are contained in the closed interval <span>\\({\\mathbb {I}}\\)</span>. In this paper we obtain some lower and upper bounds for <span>\\({\\textbf{I}}_{f\\Delta h}({\\textbf{A}},{\\textbf{B}})\\)</span> with applications to the geometric operator mean and the relative operator entropy. We verify the information monotonicity for the Csisz ár <i>f</i>-divergence operator mapping and the generalized Csiszár <i>f</i>-divergence operator mapping.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02266-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \({\textbf{A}}=\{A_{1},...,A_{n}\}\) and \({\textbf{B}}=\{B_{1},...,B_{n}\}\) be two finite sequences of strictly positive operators on a Hilbert space \( {\mathcal {H}}\) and f, \(h:{\mathbb {I}}\rightarrow {\mathbb {R}}\) continuous functions with \(h>0\).. We consider the generalized Csiszár f-divergence operator mapping defined by

$$\begin{aligned} {\textbf{I}}_{f\Delta h}({\textbf{A}},{\textbf{B}})=\sum _{i=1}^{n}P_{f\Delta h}(A_{i},B_{i}), \end{aligned}$$

where

$$\begin{aligned} P_{f\Delta h}(A,B):=h(A)^{1/2}f(h(A)^{-1/2}Bh(A)^{-1/2})h(A)^{1/2} \end{aligned}$$

is introduced for every strictly positive operator A and every self-adjoint operator B, where the spectrum of the operators

$$\begin{aligned} A, A^{-1/2}BA^{-1/2}\text { and }h(A)^{-1/2}Bh(A)^{-1/2} \end{aligned}$$

are contained in the closed interval \({\mathbb {I}}\). In this paper we obtain some lower and upper bounds for \({\textbf{I}}_{f\Delta h}({\textbf{A}},{\textbf{B}})\) with applications to the geometric operator mean and the relative operator entropy. We verify the information monotonicity for the Csisz ár f-divergence operator mapping and the generalized Csiszár f-divergence operator mapping.

广义西斯扎尔 f-发散算子映射的下界和上界
让({\textbf{A}}=\{A_{1},...,A_{n}\})和({\textbf{B}}=\{B_{1},....,B_{n}\})是希尔伯特空间上的两个有限序列的严格正算子,f, (h:{\mathbb {I}}\rightarrow {mathbb {R}})是具有 (h>0)的连续函数。我们考虑广义 Csiszár f-divergence 算子映射,其定义为 $$\begin{aligned} {textbf{I}}_{f\Delta h}({textbf{A}},{textbf{B}})=/sum _{i=1}^{n}P_{f\Delta h}(A_{i},B_{i}), \end{aligned}$$ 其中 $$\begin{aligned}P_{f\Delta h}(A,B):=h(A)^{1/2}f(h(A)^{-1/2}Bh(A)^{-1/2})h(A)^{1/2}\{end{aligned}$$是为每一个严格正算子 A 和每一个自相加算子 B 引入的,其中算子的谱 $$\begin{aligned}A, A^{-1/2}BA^{-1/2}\text { and }h(A)^{-1/2}Bh(A)^{-1/2} \end{aligned}$$ 都包含在封闭区间 \({\mathbb {I}}\) 中。本文通过几何算子平均数和相对算子熵的应用,得到了 \({\textbf{I}}_{f\Delta h}({\textbf{A}},{\textbf{B}})\ 的一些下界和上界。我们验证了 Csisz ár f-divergence 算子映射和广义 Csiszár f-divergence 算子映射的信息单调性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信