Muhammad Rizwan Shakir, Samina Akbar, Imran Raza, Muhammad Awais, Saima Rehman
{"title":"Facile Synthesis and Characterization of Copper Phosphide Nanoparticles as Efficient Electrocatalyst for Hydrogen and Oxygen Evolution Reaction","authors":"Muhammad Rizwan Shakir, Samina Akbar, Imran Raza, Muhammad Awais, Saima Rehman","doi":"10.1007/s13369-024-09514-4","DOIUrl":null,"url":null,"abstract":"<p>Electrocatalytic water splitting has been considered as one of the most significant and sustainable approaches for hydrogen production. To make the process more efficient and affordable, there is a need to develop robust, cheap, highly active and stable electrocatalysts. Herein, facile synthesis of copper phosphide nanoparticles (Cu<sub>3</sub>P NPs) with size ranging from 30 to 80 nm was carried out by using solvothermal process. Variety of characterization techniques like FTIR, XRD, Raman spectroscopy, dynamic light scattering and SEM–EDX, verified the successful synthesis of Cu<sub>3</sub>P NPs with spherical morphology. Three-electrode system containing glassy carbon, platinum mesh and Hg/HgO as working, counter and reference electrode, respectively, was used for the electrochemical characterization. Electrochemical studies, i.e., CV, LSV and chronoamperometric analysis, revealed efficiency and stability of electrocatalyst for electrolysis of water including hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Briefly, the Cu<sub>3</sub>P NPs exhibited an excellent OER activity, achieving the current density of 10 mA cm<sup>−2</sup> with an overpotential of 450 mV. Tafel slope value 63 mV dec<sup>−1</sup> suggested fast OER reaction kinetics. The Cu<sub>3</sub>P catalyst also exhibited significant HER activity, approaching a current density of 10 mA cm<sup>−2</sup> with an overpotential of 447 mV. Fast HER reaction kinetics was observed with a Tafel slope value of 132 mV dec<sup>−1</sup>. Moreover, the chronoamperometric studies revealed the stability of electrocatalyst providing favorable conditions for sustainable, long-term oxygen and hydrogen production.</p>","PeriodicalId":8109,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"18 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1007/s13369-024-09514-4","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
Electrocatalytic water splitting has been considered as one of the most significant and sustainable approaches for hydrogen production. To make the process more efficient and affordable, there is a need to develop robust, cheap, highly active and stable electrocatalysts. Herein, facile synthesis of copper phosphide nanoparticles (Cu3P NPs) with size ranging from 30 to 80 nm was carried out by using solvothermal process. Variety of characterization techniques like FTIR, XRD, Raman spectroscopy, dynamic light scattering and SEM–EDX, verified the successful synthesis of Cu3P NPs with spherical morphology. Three-electrode system containing glassy carbon, platinum mesh and Hg/HgO as working, counter and reference electrode, respectively, was used for the electrochemical characterization. Electrochemical studies, i.e., CV, LSV and chronoamperometric analysis, revealed efficiency and stability of electrocatalyst for electrolysis of water including hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Briefly, the Cu3P NPs exhibited an excellent OER activity, achieving the current density of 10 mA cm−2 with an overpotential of 450 mV. Tafel slope value 63 mV dec−1 suggested fast OER reaction kinetics. The Cu3P catalyst also exhibited significant HER activity, approaching a current density of 10 mA cm−2 with an overpotential of 447 mV. Fast HER reaction kinetics was observed with a Tafel slope value of 132 mV dec−1. Moreover, the chronoamperometric studies revealed the stability of electrocatalyst providing favorable conditions for sustainable, long-term oxygen and hydrogen production.
期刊介绍:
King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE).
AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.